Online Social Networks and Media 50 (2025) 100335

Contents lists available at ScienceDirect

SOCIAL
NETWORKS
AND MEDIA

Online Social Networks and Media

journal homepage: www.elsevier.com/locate/osnem

IMMENSE: Inductive Multi-perspective User Classification in Social
Networks™

Francesco Benedetti *™<© | Antonio Pellicani »*‘?>*, Gianvito Pio »*‘“, Michelangelo Ceci »*¢

a Department of Computer Science, University of Bari, Via Orabona 4, Bari, 70125, Italy

b Department of Computer Science, University of Pisa, Largo Bruno Pontecorvo 3, Pisa, 56127, Italy

¢ Data Science Laboratory, National Interuniversity Consortium for Informatics (CINI), Via Volturno 58, Roma, 00185, Italy
d Department of Knowledge Technologies, JoZef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia

ARTICLE INFO ABSTRACT

Keywords:

Risky user identification
Social network analysis
Inductive learning
Network topology

Online social networks increasingly expose people to users who propagate discriminatory, hateful, and violent
content. Young users, in particular, are vulnerable to exposure to such content, which can have harmful
psychological and social repercussions. Given the massive scale of today’s social networks, in terms of both
published content and number of users, there is an urgent need for effective systems to aid Law Enforcement
Agencies (LEAs) in identifying and addressing users that disseminate malicious content. In this work we
introduce IMMENSE, a machine learning-based method for detecting malicious social network users. Our
approach adopts a hybrid classification strategy that integrates three perspectives: the semantics of the
users’ published content, their social relationships and their spatial information. Such contextual perspectives
potentially enhance classification performance beyond text-only analysis. Importantly, IMMENSE employs an
inductive learning approach, enabling it to classify previously unseen users or entire new networks without
the need for costly and time-consuming model retraining procedures. Experiments carried out on a real-world
Twitter/X dataset showed the superiority of IMMENSE against five state of the art competitors, confirming the
benefits of its hybrid approach for effective deployment in social network monitoring systems.

1. Introduction

The significance of social networks in modern society is widely
recognized as they enable various activities such as communication,
networking, collaboration, and the sharing of news or interests. In
addition, they also enable to perform several kinds of analysis and solve
multiple tasks, such as user classification [1,2], profiling [3,4], and
recommendation [5-8].

Over time, social media platforms have undergone substantial evo-
lution, allowing users to form multiple types of relationships, for in-
stance, by liking posts, sharing others’ opinions, engaging in real-time
conversations, and joining groups or communities. Nevertheless, these
platforms can also be misused for malicious purposes, including (i) dis-
seminating fake news, promoting hate against minorities, and spread-
ing radical ideologies, (ii) assembling like-minded individuals into
extremist communities, and (iii) recruiting vulnerable individuals into
terrorist or criminal organizations. In this regard, several reports have
highlighted how radicals exploit social media platforms [9,10].

To counter this phenomenon, Law Enforcement Agencies (LEAs)
established dedicated divisions whose job is to detect and take action
against users who engage in illegal activities. However, social networks
are dynamic systems in continuous evolution, generating a massive
amount of data that humans cannot monitor in real time. In this
scenario, it has become essential to assist LEAs with automated tools ca-
pable of detecting inappropriate content and reporting suspicious users.
Specifically, for this task, three main dimensions should be taken into
account: (i) the content generated by users, since it can reveal beliefs
and intentions; (ii) the social relationships established with other users
and content thereof (i.e., follows, retweets, likes), to identify silent users
who do not post inappropriate content but are in touch with other
users appearing as suspicious; (iii) the spatial relationships, possibly
established by geographical closeness among users, since dangerous
nearby users are more willing to join local communities. These three
dimensions, also referred to as modalities, are usually treated by existing
approaches for user classification in a separate manner. In particular,
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most of the existing systems perform the classification based on the
content published by users [11,12], or solely based on the topology of
the network established based on social or spatial relationships [13,14].
However, online radicalization is a complex phenomenon that involves
several aspects. Considering only one of them and disregarding the
others can result in not detecting users who are dangerous under a
different, unconsidered perspective.

For this reason, hybrid strategies that incorporate a combination
of different modalities for analyzing social networks have been pro-
posed. These strategies have been successfully used in various user
classification tasks in social networks, showing improved performance
compared with tools that use a single modality/perspective. Among
them, focusing on methods aiming to identify suspicious users, that
is the goal of the method proposed in the present paper, the method
proposed in [1], called SAIRUS, can be considered the first approach
that simultaneously leverages the three aspects mentioned above in
a multimodal fashion. However, SAIRUS is limited in the approach
adopted to represent nodes, as it operates under a transductive [15]
setting. In this setting, a classification model is learned from a network
containing both labeled and unlabeled nodes, and is then exploited to
assign labels to the unlabeled nodes (see Fig. 1(a)). Thus, when training
models in such a setting, nodes that need to be labeled have to be
already available at training time. As a consequence, it is impossible to
classify any node that has not been observed during the training phase.
It is therefore noteworthy that a transductive approach cannot be easily
adopted in a real-world scenario, since LEAs would need to retrain the
model every time a new user needs to be assessed.

To overcome this limitation, in this paper we propose IMMENSE
(Inductive Multi-perspective Model for usEr classificatioN in Social
nEtworks), a new multimodal approach that works in the inductive
setting. In particular, IMMENSE learns a model from a labeled network
of users provided at training time, that is able to generalize to new,
unseen nodes by leveraging the different modalities considered (see
Fig. 1(b)). To the best of our knowledge, no existing technique is able
to solve the suspicious user identification task in such a setting, si-
multaneously leveraging the above-mentioned modalities/perspectives
(content, social relationships, and spatial relationships). Therefore, the
main contributions of this paper can be summarized as follows:

» we propose the novel method IMMENSE that can be considered
among the first approaches that consider multiple perspectives,
i.e., the posted content, the social relationships, and the spa-
tial relationships, for the identification of risky users in social
networks;

methodologically, IMMENSE is able to work in the inductive
setting, enabling the learned model to be directly adopted for
making predictions on new users who have not been observed
during the training;

as a consequence, IMMENSE promotes model reusability and,
therefore, the sustainability of Al systems, since, in real-world
environments, making predictions for a batch of new users does
not require to re-train a model from scratch.

The remaining of the paper is organized as follows: in Section 2
we briefly discuss some related work; in Section 3 we describe the
details of the proposed approach; in Section 4 we describe the results
of our experimental evaluation; finally, in Section 5 we draw some
conclusions and outline possible future works.

2. Related work

Since this work has its roots in the node classification task for
network data, in the following subsection we briefly describe some of
the existing transductive and inductive techniques for solving such a
task. Then, we provide an overview of existing approaches for user
classification in social networks.
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Fig. 1. A graphical representation of the transductive (on the top) and
inductive (on the bottom) learning settings. White nodes represent unlabeled
nodes.

2.1. Transductive and inductive learning for network data

Early techniques for solving machine learning tasks from network
data rely on identifying a numerical representation of nodes (node em-
beddings) in a transductive setting [16-20], and learning a predictive
model on top of such representations. These techniques are well-suited
for scenarios where the network is only partially labeled and the con-
sidered task consists of labeling observed nodes only. In this context,
pioneering methods for learning node embeddings are DeepWalk [21]
and Node2Vec [22], both based on random walks. Nevertheless, we
can also find methods working in the transductive setting that directly
classify unlabeled nodes without performing a preliminary embedding
phase. An example is GNetMine [13], which works with heterogeneous
networks, performing label propagation across nodes of different types.

On the other hand, techniques able to identify node embeddings
in an inductive setting aim to learn a decision function across the
entire data space, thus enabling the generalization to unseen nodes that
possess similar types of features. One of the most popular approaches is
GraphSAGE [23], which operates in an iterative fashion. In particular,
it aggregates the features of the nodes in the immediate neighborhood
of the node being represented: At each iteration, the representation of a
given node at the previous iteration is concatenated with that obtained
through the aggregation of the representations of its neighboring nodes,
and processed by a nonlinear activation function to compute the new
representation. In the inference phase, the learned model is applied to
represent a new (unseen) node, also aggregating information from its
local neighborhood.

More recently, the method Heterogeneous Graph Transformer [24]
(HGT) has been specifically proposed for the analysis of heterogeneous
graphs. To model heterogeneity, HGT employs multiple parameters that
are node-type and edge-type dependent to characterize the heteroge-
neous attention over each edge, empowering it to maintain dedicated
representations for different types of nodes and edges.
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Another method that works in the inductive learning setting is
AGAIN [25]. It combines a sampling approach with an attention-based
strategy. During the sampling phase, a fixed number of neighbors
are selected, with the size varying according to the search depth.
Then, during the aggregation, an attention mechanism assigns different
learnable weights to the neighbors, indicating their relative importance
for the embedding of a given node.

Finally, it is worth mentioning RIO-GNN [26], an inductive node
embedding framework for multi-relational graphs. Its architecture con-
sists of three modules: the first measures the similarity among training
instances sharing the same label; the second uses these similarity values
to sample, for each instance, a set of closest neighbors under each
relationship; the third aggregates neighbor information across relations
to obtain a comprehensive embedding.

In the literature, we can also find approaches capable of operating
in both inductive and transductive settings. An example is represented
by the popular Graph Attention Networks (GATs) [27], which calculate
node representations using multi-head attention [28]. In the transduc-
tive setting, GATs process the entire network simultaneously, learning
attention weights that model the relative importance of node relation-
ships in the existing graph structure. However, GATs do not require
that all nodes are available during training, as their shared attention
mechanisms can generalize to unseen nodes. When new nodes become
available, the learned attention functions are applied inductively to
process their neighborhood structures and properties.

Another approach capable of operating in both settings is Graph
Extrapolation Network [29], having the goal to perform Out Of Graph
(OO0G) link prediction. The representation for a new node is computed
by exploiting the features of its neighboring nodes and edges. At
training time, in order to incorporate knowledge about the relationships
between unseen nodes, a transductive component is employed. This
involves aggregating the representations of neighboring nodes, also
considering unseen nodes, which are generated/simulated at training
time via a meta-learning framework.

2.2. User classification in social networks

The user classification task aims at predicting a label for unlabeled
users in a network, based on their properties. The labels may vary
depending on the specific considered problem. Existing user classi-
fication techniques fall into three categories, namely: content-based,
topology-based, and hybrid.

Content-based approaches classify users by relying exclusively on
their published content.

For example, in [2] the authors aim at detecting bot accounts.
Users are represented as a document obtained by concatenating their
published posts. Documents are divided into a fixed set of chunks
and, for each term in the vocabulary, its occurrences in every chunk
are counted, obtaining a matrix for each document, where the rows
represent chunks and columns represent the number of occurrences in
a chunk. A weighting scheme is then used to adjust the term signals
to better capture differences between human and bot-generated texts.
The signals are decomposed via wavelet transform functions and, lastly,
a set of features is extracted from the transformed matrix and fed to
a classifier (authors experimented with MLPs and random forests) for
learning a binary classification model.

A content-based user classification approach was also used for
predicting the political affiliation of Twitter users [30]. The authors
adopted a two-step approach: first, they use a model based on Bi-LSTM
and attention, trained on a corpus of tweets wrote by members of
the U.S. Congress, for computing the probability of a single tweet to
be associated with the democratic or the republican party. Then, for
each user, they average the probabilities computed for their tweets and
compute additional statistics, such as standard deviation, minimum,
maximum, median, first quartile, third quartile, proportion of tweets
with a high probability (>0.6) of being Republican/Democratic. A
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Support Vector Machine is then used to predict the user’s political
affiliation based on these features.

Shifting to focus on topology-based classification approaches, it is
worth noting that they aim to solve the learning task by performing
exclusively the analysis of the topology of the network of relationships.
State-of-the-art approaches are mainly based on graph neural networks
(GNN) [31], which leverage the properties of the graph to create
meaningful representations of nodes (users, in this case), edges (rela-
tionships among users), and even the whole graph (the whole social
network). In [32] the authors purposely ignored node features to rely
solely on the network topology, aiming to show the importance of node
connections for user classification. They compared the performance of
a model based on harmonic functions [33] with two GNN variants,
namely, Graph Convolutional Networks (GCNs) [34] and Graph At-
tention Networks (GATs) [27], where the value of node features is
purposely set to zero. All three classifiers achieved good results in terms
of accuracy, with the harmonic classifier slightly outperforming the two
competitors, possibly because natively based on network connections
instead of node features.

Topology-based approaches have also been investigated for the ex-
ploitation of the spatial information. An example is [35], where the goal
is to detect areas at higher risk for dengue. The authors analyzed tweets
published by users who mentioned having personal experience with
the disease. Clustering was performed using the geolocations associated
with the tweets, followed by the application of two probabilistic models
to identify spatial regions with a higher risk of infection.

Finally, hybrid approaches aim to combine the contribution pro-
vided by the content posted by users with that of the network topology.

An example of hybrid approach is Gitsec [36], a classification
system for Github users, aimed at detecting malicious accounts on
the platform. The framework solves classification tasks by taking into
account the descriptive features about the accounts, their activity, and
two networks: a user-repository graph, that tracks the way each user
interacts with repositories, and a user-user graph, that describes the
interactions among users. Methodologically, Gitsec uses two separate
PLSTM networks connected with the attention mechanism to analyze
data about the user activity. A GNN model based on GraphSAGE
produces a prediction for the users based on the user-repo graph.
The user-user graph is also analyzed and five structural features are
obtained for each user. The outputs of these modules, together with the
descriptive features of a user, are then fed to a decision maker, such as
XGboost, to provide the final prediction for the users.

In [37], the authors propose a hybrid user classification framework
that considers profile features, user generated content, social relation-
ships and social interactions. The proposed system is made of a static
module, that extracts statistical features from user profiles and user
generated content. A second parallel module based on LSTM extracts
dynamic features from user interactions. The two features sets are fed
to an XGBoost based classifier to provide the final prediction.

Hybrid approaches can also be in the form of general-purpose
methods able to solve classification tasks in the relational setting, where
each perspective is modeled through one or more tables of a relational
database. A relevant example is the system Re3py [38], a classification
system based on ensembles of relational decision trees. The method first
generates complex aggregate features by navigating foreign key paths
involving multiple database tables. Then, a predictive model is learned
via top-down induction of decision tree ensembles, that exploit both the
original features and the generated ones. In the same category, we can
also find the system Mr-SBC [39], a probabilistic approach that extends
the naive Bayes classifier to handle multirelational settings represented
as database tables connected by foreign key constraints. The posterior
probabilities are computed using first-order classification rules that are
learned during the training phase.

It is noteworthy that most of the existing works primarily consider
the content posted by users. While some approaches consider the rela-
tionships, they often create artificial links based on similarity measures
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or the co-occurrence of words, rather than explicitly modeling real rela-
tionships among users. Moreover, possible spatial relationships among
users are almost always ignored. Finally, general-purpose relational
methods, like those mentioned before [38,39], do not explicitly capture
the semantics of the posted content, but represent it only through a
simple document-word table of a relational database.

To the best of our knowledge, only one existing method [1] fully
integrates the three aspects considered in this paper, also providing
the right importance to the semantic of the content posted by users.
However, as introduced in Section 1, it exhibits the limitation of
transductive approaches, i.e., it cannot perform predictions for new
users that have not been observed during the training phase, without
re-training the whole model from scratch. On the contrary, the method
IMMENSE proposed in this paper fully exploits these three perspective
in an inductive learning setting.

3. The proposed method IMMENSE

Before describing the proposed method, we formalize some key
aspects of the task we intend to solve. Specifically, we define a social
network as (N, C, E¢, E;), where:

* N is the set of nodes, each representing a user. Users can be
labeled as safe (.S) or risky (R). We refer to the former as NS
and to the latter as N®., Some users may not be labeled (i.e., their
label is unknown), meaning that N y N(® c N.

+ C is the set of textual contents posted by users. The geographical
position from which the content was posted may be available.

* E- C N x C is the set of relationships that link the users to the
textual content they posted.

*+ E; C N X N is the set of topological social connections among
users. These relationships are represented by directed links, since
are not necessarily symmetric (e.g., if user A follows user B, it
does not imply that user B follows user A).

Since we work in a supervised inductive setting, the training phase
exclusively involves labeled users. By leveraging their content, their
social relationships and their geographical proximity, we train a model
to accurately map users to their respective labels, ensuring it can
generalize to new, unseen users.

The general architecture of the proposed method IMMENSE is de-
picted in Fig. 2, which shows its three main components, specialized for
the analysis of the three considered perspectives. A final model fusion
step is then performed to combine the contribution of such components.
In the following subsections we describe and discuss each phase in
detail.

3.1. Semantic content analysis of the textual content

This phase analyzes the textual content to generate a user profile
and to assign a label according to such a perspective. Specifically, we
process the textual content produced by users on the social network,
applying a preprocessing pipeline that includes tokenization, stopword
removal, and stemming. The resulting posts are then concatenated
into a single document for each user, following their chronological
ordering. In this way, IMMENSE can also indirectly take into account
the way in which the content posted by the user evolved over time.
This is possible through the adoption of a Word2Vec model [40],
which is trained to map each word, considering its context in the
text, into a k,.-dimensional semantic space. By leveraging the additive
compositionality property of word embeddings [41], we compute an
embedding vector for each available user. This property allows the
user’s embedding to be represented as the sum of the embeddings of the
words in their posted contents. Note that to perform this step, also more
recent approaches based on BERT or large language models (LLMs)
could be used, but we stick with Word2Vec as it demonstrated superior
accuracy in previous studies [42,43]. Moreover, learning a Word2Vec
embedding is considerably less computationally intensive than training
models like BERT or LLMs.

Subsequently, we use the obtained embeddings to train two distinct
one-class classifiers (one for each class), which are based on stacked
autoencoders [44]. An autoencoder is a model that compresses the
input into a lower-dimensional representation through an encoder and
then reconstructs the original input using a decoder. Formally, given
an input X, an autoencoder learns an encoding function en : X — X’
and a decoding function dec : X’ — X such that:

(en,dec) = argmin ,, 4o || X — dec(en(X))||*

In other words, the goal is to minimize the reconstruction error,
which indicates how much the actual input differs from the reconstruc-
tion. In our model, the encoder is made of the input layer followed
by two linear layers whose dimension is respectively one half and one
fourth of the input. The decoder’s layers mirror the structure of the
encoder, so that the output has the same dimension as the input. Each
layer adopts the ReLU as non linear activation function.

We employ one autoencoder trained on the embeddings of users
labeled as risky and one autoencoder trained on those labeled as safe.
Each user’s representation is fed into both autoencoders, and their
respective reconstruction errors, denoted as Rz and Ry, are computed
as the mean squared error between the input and the output vectors.
The semantic content analysis module outputs these two reconstruction
error values, along with a label L. The label is assigned a value
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of 0 (safe) if Ry < Ry; otherwise, it is set to 1 (risky). The adoption
of two separate autoencoders, rather than a single binary classifier, is
motivated by the fact that they tend to provide a higher accuracy in
presence of class imbalance [45], which is the situation we face in our
scenario.

3.2. Network topology analysis of user social relationships

This component analyzes the relationships between users in the
social network. Specifically, the user relationships can be represented
by an adjacency matrix A € {0,1}NXIN| where A;; = 1 if user
N, follows' user N 5 0 otherwise. However, this matrix would have
an extremely high dimensionality with significant sparsity, making it
impractical to process. This occurs because, in most social networks,
each user is connected with only a small fraction of the total users in
the network, resulting in many entries of the adjacency matrix being
zero. To address this issue, before learning a predictive model, we aim
to identify a lower-dimensional, denser, feature space, of dimension k,,
representing the network of relationships of each user. For this purpose,
we adopt GraphSAGE [23], that generates embeddings for nodes in a
network in an iterative fashion, also exploiting the features of the nodes
coming from the local neighborhood.

Formally, at the ith iteration and for each user v € N, its embedding
hi is computed also considering its neighborhood N(v). In particu-

lar, we first produce an aggregated vector representation hij\f © of its
neighborhood at the ith iteration as:
Z p il
u
. eN'(v)
mLoo= @
VO N )

Then, the current step user representation hz is obtained by concate-
nating its previous representation h’~! to the aggregated neighborhood
information hz\/ ’ and by feeding the obtained vector through a fully
connected layer, whose weights are updated in the training phase, with
nonlinear activation function ¢ (in our case, the ReLU function):

hi = ¢ (w' .CONCAT (hv‘ 1 h’MU))) @
where W' is a learnable weights matrix. The obtained user represen-
tation serves as input for subsequent iterations in the algorithm, each
of which is performed by a GraphSAGE layer. Therefore, the number
of iterations corresponds with the number of GraphSAGE layers used
to generate the final node embedding, as well as to the depth in
the network reached when representing each node: each additional
GraphSAGE layer expands the node’s informational reach by one hop,
effectively broadening the considered neighborhood. This layered ap-
proach allows the algorithm to capture increasingly complex structural
information from the graph, enhancing the richness of the resulting
embeddings.

In IMMENSE we construct a graph where users are connected based
on their relationships in the analyzed social network. Each node (user)
in the graph is associated with features corresponding to the user’s
semantic representation obtained in the previous phase of the method.
It is noteworthy that this choice may appear to possibly introduce some
redundancies with respect to the semantic analysis module. However, it
is noteworthy that users tend to connect with others who share similar
views and beliefs, which are primarily expressed through contents
posted on social media platforms. By integrating the features extracted
from the content, we not only capture the structure of connections,
but also the underlying reasons for these connections. This approach
enables a more comprehensive understanding of the network, where
topology and content mutually inform one another. Essentially, we

1 In this formalization, we use the follows relationship as an illustrative
example. More generally, any asymmetric or symmetric relationship (the latter
achieved by duplicating links) can be modeled in a similar way.
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argue that these features do not introduce substantial redundancy in
the representation; instead, they enhance the topological analysis by
incorporating semantic information that captures the real-world factors
driving network formation.

In IMMENSE we train GraphSAGE in a supervised manner to in-
corporate user labels from this early stage of the embedding. This
approach helps the model to build a representation that facilitates
reliable classification in the subsequent steps. To this end, our training
architecture consists of three layers, where the first two layers are
devoted to capturing the features of neighboring nodes of up to hops in
the network, while the final is a linear layer with log-softmax activation
function to output the predicted log-probabilities of the node to belong
to the safe and risky class. The prediction is used to compute the loss,
which is then backpropagated during training.

Another important aspect to consider, already mentioned before, is
that the task being tackled is inherently imbalanced. While it is diffi-
cult to quantify precisely how much content on social media reflects
extremist or discriminatory ideologies, it is reasonable to assume that
such content represents only a small minority of the overall material
available online. Hence, during the learning phase, users cannot be
treated equally, as the safe class significantly outnumbers the risky
class. This imbalance could lead the model to develop a bias towards
the majority class [46]. As a consequence, errors made during the
predictions cannot be treated equally, because misclassifying a risky
user as safe is much more dangerous than mistakenly predicting that
a safe user is risky. To address class imbalance, we consider two
alternative strategies:

« Class Weighting. This strategy consists in using a weighting schema
based on inverse class frequency. In particular, it assigns a weight
to each instance, which is inversely proportional to the number of
instances belonging to the same class in the training set. More formally:

weight, g, = % weight, r, = % 3
As training loss function we employ the negative log likelihood. The
weights are incorporated into the training loss to give a higher penalty
to the model when, during training, it misclassifies instances belonging
to the minority class. Formally, let p; , be the predicted probability that
the model assigns to the ith instance x; of belonging to the true class

;, the loss is defined as:
L(x;) = —weightyi . Iog(pi’y,) 4

where weight, = weight,;, if y; =0, otherwise weight, = weight,,.

« Focal loss. This strategy employs the focal loss [47], that is a training

loss function that directly accounts for the imbalance. It is a variant of
the standard cross entropy function, defined as:

L(x;,risky) = =g, (1 = p;)" - log(p;) (5)

where @, is a balancing weight, y > 0 is the focusing tunable

parameter, and p; is computed as:

_ pi if y = risky

pi = ! . (6)
1 —p; otherwise

In practice, the focal loss penalizes wrong false negatives on which
the model has high confidence.

Once trained, the node classifier is used to compute, for each user
u in the training set, two probability values, respectively P’ ¢ (4) and
Prel(u), which are the predicted probabilities that the user u has of being
safe or risky, based only on its social connections in the graph. Such
probability values are the output of the relational analysis module, and
will be subsequently used in the model fusion phase.
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3.3. Analysis of the user spatial closeness

This module is devoted to the analysis of the spatial closeness
among users in the social network. While we again use an adjacency
matrix to represent spatial relationships, the approach slightly differs
from that adopted in the previous module. In particular, we construct
a matrix S € [0, 1]'/NXINI where, unlike the matrix A containing binary
values used for the analysis of user relationships, each cell S;; contains
a continuous closeness score in [0, 1]. This score quantifies the spatial
proximity between users i and j, providing a granular representation
of their spatial relationships.

To compute the closeness score, we approximate the position of
each user by identifying the most frequent location associated with
his/her posted contents. We opt for the most frequent location rather
than other possible aggregations of locations, such as the average
latitude/longitude, as the latter could potentially generate coordinates
corresponding to a place where the user has never actually been.

Using these locations, we then compute the geodetic distance be-
tween the users of the social network. Specifically, given two users
u;,u, with their latitudes ¢,, ¢, and their longitudes 4,, 4,, the distance
d(u;,u,) is given by:

[ a(uy,u,)
d(uy,uy) = 2r - arctan #ul,zuz) @)

where r is the Earth radius (~6371 km) and a(u;,u,) = sin’ (@) +

cos(q§1)~cos(¢2)-sin2 (% ) To obtain a closeness score from such dis-
tance values, we need to compute the z-normalized distances z(u;, u,).
First we define the mean u,; and the standard deviation o, of the

distances as:
(d(a,b) — py)?
Hy = L . Z d(a, b) 6, = Za.beN,a#b d (8)
7N d N
a,beN ,a#b

Then, the z-score normalized distance among users (u,, u,) is computed
as:

d(uy,up) — py
2@y, up) = ——————— ©)
Od
This allows us to distinguish between users who are closer than the
average and those who are farther than the average. More formally,
since two users u;,u, are closer than the average if z(u;,u,) < 0, we

compute the closeness score in [0, 1] as follows:

{M if z(uy,uy) <0
closeness(uy,uy) = ming (10)
0 otherwise
where min, represents the minimum (most negative) z-normalized dis-
tance observed across all user pairs in the network. This normalization
ensures that the user pair with the smallest z-score (i.e., the geograph-
ically closest pair) receives a closeness score of 1, while pairs with
positive z-scores (farther than average) receive a closeness score of 0.

The obtained spatial adjacency matrix is used to build a graph,
where two users ul,u2 are connected when closeness(u;,u,) > 0, with
a weight equal to closeness(u;,u,). We employ GraphSAGE also in
this case, to extract k, dimensional embeddings of nodes. Note that a
given user who never shares his/her geographical information in any of
his/her posted content will appear as isolated, namely, spatially distant
from all the other users. In this case, the embedding identified through
GraphSAGE for the spatial dimension will solely rely on his/her initial
features, that, as detailed in Section 3.2, are based on the embedding
of the posted content.

To account for the class imbalance, we adopt the same strategies as
we defined for the network topology analysis (see Section 3.2).

This module outputs, for a given user , the probabilities P,”(u) and
PP (u), that are the predicted probabilities that the user is safe or risky,
respectively, based on spatial relationships.
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Table 1

Quantitative information about the considered dataset.
Users 37945
Risky users 2807
Safe users 35138
Users with spatial information 1043
Avg document length 136
Avg social following per user 16
Avg followers per user 2

3.4. Model fusion

The final module of our method IMMENSE combines the outputs of
the three previous modules, to assign a definitive label to each user.
Specifically, in this phase, we train a Multi-Layer Perceptron (MLP)
that acts as a meta-model, considering the following input features:
the risky and safe autoencoders reconstruction errors Ry, Ry, along
with the label L¢°" from the semantic content analysis; the predicted
label probabilities of the user being risky or safe, respectively P (u)
and Pr"” (u), from the analysis of social relationships; the predicted
probabilities P;”(u) and P;’(u), of the user being risky or safe, based
on the analysis of the user spatial closeness.

The MLP has one hidden layer with the sigmoid activation function,
which allows it to capture possible nonlinear dependencies between
input and output variables. Since we are dealing with a classification
task, the final layer adopts the softmax activation function, which
outputs the predicted probabilities of each user to belong to one class
or the other. Given that the outputs are probabilistic, we train the MLP
using the negative log likelihood as loss function.

We remind that our task is strongly imbalanced. Therefore, also the
MLP adopted for the model fusion is trained using one of the strategies
outlined in Section 3.2.

4. Experiments

In order to evaluate the effectiveness of the proposed method IM-
MENSE, we performed an extensive set of experiments. In the following
subsections, we first provide some details about the considered dataset,
then we describe the considered competitor systems and the exper-
imental setting. Finally, we report and discuss the obtained results.

4.1. The considered dataset

The dataset for our experimental evaluation was built on the basis
of a list of keywords related to radicalism and on a set of known
radical/risky posts D, provided in the context of the Horizon 2020
project CounteR? by various Law Enforcement Agencies (LEAs). Using
the Twitter API, we retrieved up to 1500 tweets for each keyword,
covering the period from February 6th, 2022 to February 6th, 2023. For
each author of the downloaded tweets, we then retrieved a list of their
followers, limited to a maximum of 1000 due to API usage restrictions.
This process allowed us to create a network of social relationships.
We finally kept only users who follow more than 5 other users in the
obtained list of users, and retrieved up to 20 of the most recent tweets
for each user in the network.

To define the ground truth, we adopted the following procedure.
We employed a pre-trained Word2Vec model® to process the dataset
Dy, extracting |Dy| risky embeddings. We then aggregated these em-
beddings to obtain a global risky vector vy, by summation. In the same
way, we obtained an embedding for each user, based on his/her posts.
We then measured the similarity between vz and the embedding of

2 https://counter-project.eu/.
3 https://code.google.com/archive/p/word2vec/.
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Results obtained by IMMENSE (with class weighting). The best result in terms of F1 is shown in bold.

IMMENSE: k, = k, = k, = 128

Configuration All users Safe Risky
C R S Prec Rec F1 Acc Prec Rec F1 Prec Rec F1
v 0.765 0.960  0.829 0.940 1.000 0.940 0.970 0.530 0.980 0.688
v 0.775 0.950 0.834 0.940 1.000 0.940 0.969 0.550 0.960 0.699
v 0.720 0.940 0.779 0.910 1.000 0.910 0.953 0.440 0970 0.605
v 0.700  0.935 0.750 0.900 1.000 0.890  0.940 0.400 0.980 0.560
v 0.775 0.955 0.836 0.940 1.000 0.940 0.969 0.550 0.970 0.702
v 0.795 0.940 0.850 0.750 0.990 0.950 0.970 0.600 0.930 0.730
v v 0.875 0975 0.918 0.980 1.000 0980 0.990 0.750 0.970  0.846
v v 0.840 0975 0.891 0.970 1.000 0.970  0.980 0.680 0.980 0.803
v v 0.715 0.940 0.773 0.910 1.000 0.900 0.947 0.430 0.980 0.598
v v v 0.875 0975 0.918 0.980 1.000 0980 0.990 0.750 0.970  0.846
IMMENSE: k, = k, = k, = 256
Configuration All users Safe Risky
C R S Prec Rec F1 Acc Prec Rec F1 Prec Rec F1
v 0.820 0.975 0.879 0.960 1.000 0.960  0.980 0.640 0.990 0.777
v 0.940 0.900 0.919 0.980 0990 0990 0.990 0.890 0.810 0.848
v 0.745 0.940 0.802 0.930 1.000 0.930 0.964 0.490 0.950 0.640
'S 0.745  0.940 0.805 0.930 1.000 0.930  0.964 0.490 0.950 0.647
v 0.730 0945 0.791 0.920 1.000 0.910 0.953 0.460 0.980 0.630
v 0.735 0.950 0.797 0.920 1.000  0.920  0.958 0.470 0.980 0.635
v v 0.875 0.975 0.918 0.980 1.000 0980 0.990 0.750 0.970  0.846
v v 0.850 0.980  0.902 0.970 1.000 0.970  0.985 0.700 0.990 0.820
v v 0.745 0.950 0.805 0.930 1.000  0.930  0.960 0.490 0970  0.650
4 v v 0.880 0.975 0.921 0.980 1.000 0.980 0.990 0.760 0.970 0.852
IMMENSE: k, = k, = k, = 512
Configuration All users Safe Risky
C R S Prec Rec F1 Acc Prec Rec F1 Prec Rec F1
4 0.850 0.975 0.901 0.970 1.000 0.970 0.985 0.700 0.980 0.817
v 0.850 0.975 0.901 0.970 1.000 0.970  0.985 0.700 0.980 0.817
v 0.710 0.940 0.769 0.910 1.000  0.900  0.950 0.420 0980 0.588
Ve 0.705 0.935 0.760 0.900 1.000 0.890 0.942 0.410 0.980 0.578
v 0.710 0.940 0.769 0.900 1.000  0.900  0.947 0.420 0.980  0.590
v 0.690 0.935 0.745 0.890 1.000 0.880  0.940 0.380 0.990 0.549
v v 0.880 0.975 0.921 0.980 1.000 0980 0.990 0.760 0.970  0.852
4 4 0.880 0.975 0.918 0.980 1.000 0.980 0.990 0.750 0.970 0.846
v v 0.725 0.945 0.785 0.910 1.000 0.910 0.953 0.450 0.980 0.617
v v v 0.890 0980 0.930 0.980 1.000 0980 0.990 0.780 0.980 0.870

2 For IMMENSE configurations represents the adoption of its C, R, and S modules without the fusion module.

each user using cosine similarity. If this similarity exceeded a specified
threshold 6, the user was labeled as risky in the ground truth, otherwise
it was labeled as safe. In this way, we quantify how much the user’s
posts are close to actual risky posts. More formally, for each user u, we
assigned a label as:

risky if cosine_similarity(v,,vg) > 6

label(u) = a1

safe otherwise

where v, is the embedding of the content posted by the user u. After
analyzing the distribution of similarity values, we set the threshold &
to 0.88, which results in approximately 7% of users being labeled as
risky, which can be considered a reasonable proportion in this context
according to the LEAs (consider that the corpus is retrieved starting
from an expert-defined set of keywords). Finally, we incorporated an
additional step that considers the social relationships of users alongside
their content. After the initial labeling based on the similarity with
the v; semantic vector, we examined the network of relationships of
users labeled as safe. Any of these users having more than 10% of their
relationships with risky users were relabeled as risky.

In Table 1, we show some quantitative information about the
dataset. From the table, we can observe that the information about the
geographical position is available only for a small subset of users.

4.2. Experimental setting and competitors

Our experiments were carried out by splitting the dataset into
training (80% of the users) and testing (20% of the users) sets. The
split was made so that the two sets have no common user. In this way,
we properly evaluate the inductive capabilities of the system, namely,
its ability to effectively generalize to new users, who were not observed
during the training phase.

We experimented with three different values of the embedding di-
mensionality for the textual content k., for the network of relationships
k., and for the spatial dimension k,. Specifically, we evaluated the
following settings: k. = k, = k, = 128, k, = k, = k, = 256, and k, = k, =
k, = 512. We choose these values for embedding dimensions based on
their widespread use in related work [23,48-51]. We did not consider
configurations with different sizes for different perspectives in order to
always provide the same a-priori importance to all perspectives and leave
the fusion module to properly assess and combine their contribution.
We report the results achieved using both the proposed strategies to
handle class imbalance (see Section 3.2), namely, class weighting and
focal loss. For the latter, we used the values suggested in the original
paper [47] for its hyperparameters, i.e., y = 2.0 and a = 0.25.

To specifically evaluate the contribution provided by each perspec-
tive (content - C, relationships - R, and spatial information - S), we also
measured the performance considering different combinations thereof.
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Table 3

Results obtained by IMMENSE (with focal loss). The best result in terms of F1 is shown in bold.
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IMMENSE: k, = k, = k, = 128

Configuration All users Safe Risky
C R S Prec Rec F1 Acc Prec Rec F1 Prec Rec F1
v 0.965 0.925 0.944 0.990 0.990 1.000 0.995 0940 0.850  0.893
v 0.775 0.950 0.834 0.940 1.000 0.940  0.969 0.550 0.960  0.699
v 0.835 0.930 0.875 0.960 0.990 0970 0.980 0.680 0.890 0.771
v 0.820 0.945 0.870 0.960 0.990 0.960 0.975 0.650 0.930 0.765
v 0.895 0.920 0.907 0.980 0.990 0980 0.985 0.800 0.860 0.829
v/ 0.895 0.920 0.907 0.980 0.990 0980 0.985 0.800 0.860  0.829
4 v 0.965 0.950 0.955 0.990 0.990 1.000  0.990 0.940 0.900 0.920
v v 0.960  0.940  0.947 0.990 0.990 1.000  0.990 0.930  0.880  0.904
v v 0.910 0.930 0.920 0.980 0.990 0.990 0.990 0.830 0.870 0.850
v v v 0.980 0.850 0.900 0.980 0.980  1.000  0.990 0.980 0.700 0.810
IMMENSE: k, =k, =k, =256
Configuration All users Safe Risky
C R S Prec Rec F1 Acc Prec Rec F1 Prec Rec F1
v 0.965 0.940 0.952 0.990  0.990 1.000 0.995 0.940 0.880  0.909
v 0.940 0.900 0.919 0.980 0.990 0.990 0.990 0.890 0.810 0.848
v 0.820 0.905 0.856 0.960 0.990  0.970  0.980 0.650 0.840 0.733
v 0.815 0910 0.855 0.960 0.990 0970 0.980 0.640 0.850 0.730
v 0.870  0.895 0.882 0.970 0.990 0.980 0.985 0.750  0.810 0.779
v 0.870  0.880  0.875 0.970 0.980 0.980 0.980 0.760  0.780  0.770
v v 0.960 0.955 0.957 0.990 0990 1.000 0.995 0.930 0910  0.920
4 v 0.875 0.965 0.914 0.970 1.000  0.980  0.990 0.750 0.950 0.838
4 v 0.865 0915 0.888 0.970 0.990 0.980 0.985 0.740 0.850 0.791
v v v 0.965 0.955  0.960 0.990 0990 1.000 0.995 0940 0910 0.925
IMMENSE: k, =k, =k, =512
Configuration All users Safe Risky
C R S Prec Rec F1 Acc Prec Rec F1 Prec Rec F1
v 0.970 0.945 0.957 0.990 0990 1.000 0.995 0950 0.890 0.919
v/ 0.850 0.975 0.901 0.970 1.000  0.970  0.985 0.700 0.980 0.817
v 0.780 0.935 0.837 0.950 0.990 0.950 0.970 0.570  0.920 0.704
v 0.755 0.940 0.812 0.930 1.000  0.930  0.964 0.510 0.950 0.660
v 0.845 0.905 0.870 0.960 0.990 0970 0.980 0.700 0.840  0.760
v/ 0.810 0.930 0.857 0.960 0.990 0.960 0.975 0.630 0.900 0.740
v v 0.905  0.960  0.930 0.980 1.000  0.980  0.990 0.810 0940 0.870
v v 0.970  0.955  0.962 0.990 0990 1.000 0.995 0950 0.910 0.930
v v 0.835 0.925 0.875 0.960 0.990 0970 0.980 0.680 0.880 0.770
v v v 0.970  0.965  0.967 0.990 0990 1.000 0.995 0.950 0.930 0.940

2 For IMMENSE configurations represents the adoption of its C, R, and S modules without the fusion module.

We also performed comparative experiments considering each single
module implemented in IMMENSE.

The results obtained by IMMENSE were compared with those
achieved by the following state-of-the-art systems, namely:

* Mr-SBC [39], that represents the dataset as database tables and
adopts a probabilistic approach for the node classification task.
Re3py [38], an approach based on ensembles of relational deci-

sion trees. Its peculiarity is the ability to construct new features
dynamically by navigating foreign key paths and employing an
iterative feature aggregation strategy.

Heterogeneous Graph Transformer (HGT) [24], where, as suggested
by the authors, node features are extracted from the content us-
ing the pre-trained XLNet language model [52], which identifies
embeddings of dimension 768.

Rio-GNN [26], adopting the same procedure followed by the
authors: Rio-GNN is used for computing node embeddings and

the classification is done by an MLP. We set the features initially
associated with nodes to the same features used for IMMENSE,
and its parameter n_emb (dimension of the node embeddings to
learn) to the same value as the initial feature vector.

SAIRUS [1], a transductive framework for user classification in
social networks, able to consider the posted textual content, user
relationships, and users’ spatial closeness.

It is worth noting that both Mr-SBC and Re3py represent user content
through a bag-of-words approach, but represent relationships differ-
ently: Mr-SBC uses foreign key constraints, while Re3py relies on
first-order predicates. Unlike our method, these two approaches do not
exploit embeddings to capture the semantics of the content. HGT and
Rio-GNN, on the other hand, adopt an embedding-based approach for
representing the nodes in the network. For both HGT and Rio-GNN, we
applied the same weighting schema used by IMMENSE (see Eq. (3)) to
their respective loss functions, to account for class imbalance.

It is important to note that SAIRUS, being transductive, requires
access to the complete network of relationships and geographical infor-
mation during training, and cannot provide predictions for new users,
who have not been observed in those networks, without an additional
training phase on the network of relationships and on that representing
the geographical information. IMMENSE, on the other hand, enables
generalization to completely new networks in the prediction phase.
This aspect makes the comparison inherently unfair in favor of SAIRUS,
since it is aware of the users in the testing set during the training,
while IMMENSE is purposely made unaware of them. However, such
a comparison allows us to assess the performance of IMMENSE in such
a more challenging scenario, compared with its closest transductive
competitor.

All the experiments were performed on a workstation equipped with
a NVIDIA GeForce Titan X GPU, an Intel Xeon E5-1650-v3 CPU, and
64 GB of RAM. As evaluation measures, we consider precision, recall,
accuracy, and Fl-score, computed both on the entire set of users and
for each class separately.
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Table 4

Results obtained by inductive competitors. The best result in terms of F1 is shown in bold.
MrSBC
Configuration All users Safe Risky
C R S  Prec Rec F1 Acc Prec Rec F1 Prec Rec F1
v 0.465 0.500 0.482 0.930 0.930 1.000 0.964 0.000 0.000 0.000
v v 0.465 0.500 0.482 0.930 0.930 1.000 0.964 0.000 0.000 0.000
v v/ 0465 0.500 0.482 0.930 0.930 1.000 0.964 0.000 0.000 0.000
v v v/ 0.465 0.500 0.482 0.930 0.930 1.000 0.964 0.000 0.000 0.000
Re3py
Configuration All users Safe Risky
C R S  Prec Rec F1 Acc Prec Rec F1 Prec Rec F1
v 0.465 0.500 0.482 0.930 0.930 1.000 0.964 0.000 0.000 0.000
v v 0.465 0.500 0.482 0.930 0.930 1.000 0.964 0.000 0.000 0.000
v v 0.465 0.500 0.482 0.930 0.930 1.000 0.964 0.000 0.000 0.000
v v v/ 0.465 0.500 0.482 0.930 0.930 1.000 0.964 0.000 0.000 0.000
HGT
Configuration All users Safe Risky

Prec Rec F1 Acc Prec Rec F1 Prec Rec F1
- 0.680 0.580 0.610 0.930 0.940 0.980 0.960 0.420 0.180 0.252
RIO-GNN
Configuration All users Safe Risky
Prec Rec F1 Acc Prec Rec F1 Prec Rec F1

n_emb = 128 0.535 0.515 0.447 0.510 0.500 0.860 0.632 0.570 0.170 0.262
n_emb = 256 0.790 0.775 0.773 0.780 0.720 0.880 0.792 0.860 0.670 0.753
n_emb =512 0.630 0.605 0.594 0.610 0.670 0.410 0.509 0.590 0.800 0.679

4.3. Results and discussion

In Tables 2 and 3, we show the results obtained by IMMENSE with
the class weighting and the focal loss strategies, respectively, while in
Table 4 we show the results of all its inductive competitors. The results
refer to multiple configurations, considering the content (C), the social
relationships (R), the spatial closeness (S), and combinations thereof,
when made possible by each considered approach. The symbol? for
IMMENSE configurations represents the adoption of its C, R, and S
modules without the final fusion module. Looking at the results, it is
immediately noticeable that competitors fail to achieve satisfactory re-
sults across all evaluated configurations. Specifically, MrSBC and Re3py
exhibit a strong bias towards the safe class, classifying all users as safe in
all the considered configurations (see the recall equal to 0 for the risky
class). Both competitors clearly suffer from data unbalancing issues,
being not able to provide a good trade-off in the predictive performance
over both classes. A further motivation behind poor performances of
these competitors may be their bag-of-words representation for the
content, that can be considered suboptimal as it fails to capture the
semantics.

On the other hand, HGT manages to correctly identify some risky
users (recall on the risky class equal to 0.18), but it still tends to classify
most of users as safe. Therefore, its performance still appears affected
by class imbalance, despite the adoption of a weighted loss function
during the training.

Rio-GNN provides more useful predictions. The best results are
achieved with n_emb = 256 (average F1 equal to 0.773), but they still
remain below those obtained by our method IMMENSE. We believe that
such performances exhibited by Rio-GNN depend on the fact that the
content is taken into account exclusively through the initial features
associated with the nodes in the network, without a dedicated module
for the analysis of the semantics of the content. On the contrary, IM-
MENSE has a dedicated component for each perspective (i.e., content,
relations and spatial closeness).

Focusing on IMMENSE (see Tables 2 and 3), it is clear that the ob-
tained results are far better than those achieved by all the competitors.
In general, IMMENSE achieves the best results when all the three per-
spectives are considered, although in a few cases, some configurations

considering two perspectives yield the same macro results. However,
the results obtained for the risky class (that is the most interesting
class for our task) reveal that taking all perspectives into account
leads to the best performance with all the configurations, when class
weighting is adopted, and with an embedding dimensionality of 256 or
512, when focal loss is adopted. We can also notice that considering
one single perspective, either directly (see the configuration with the?
or going through the final fusion step, generally provides suboptimal
performances. Moreover, considering the content always appears to be
fundamental for accurate predictions, even if clearly complemented by
the perspectives modeling social relationships and spatial proximity
among users. Notably, the F1 performances increase in 5 out of 6 cases
when complementing the information provided by the posted content
with that of the spatial dimension. This is particularly interesting,
considering that the spatial information is available for a very limited
number of users (see Table 1). This result also outlines the ability of
IMMENSE of properly managing possible sparsity issues in the available
data.

It can also be noticed that IMMENSE provides balanced perfor-
mances over the risky and safe classes. These results highlight the
capability of IMMENSE of properly exploiting multiple, complemen-
tary, perspectives as well as handling class imbalance, which is typical
in the considered context.

As expected, increasing the embedding dimensionality tends to
improve performance. However, the results obtained with embedding
sizes of 128 and 256 are still highly competitive, significantly outper-
forming all baselines across all configurations.

In Table 5, we separately show the results obtained by SAIRUS,
which can be considered the closest competitor to IMMENSE. We
remind that such results are achieved in a transductive setting, and are,
in principle, not comparable with those achieved by IMMENSE in the
inductive setting, since SAIRUS is made aware of users for which it
will need to provide a label during the prediction phase. Despite this
inherent advantage provided to SAIRUS, in Table 6 we can see that
IMMENSE outperforms SAIRUS in almost all the cases. In particular,
it reaches an improvement of 9.41% in terms of F1 on all users and
of 20.83% on risky users, with a dimensionality of 512, when class
weighting is adopted, and an improvement of 14.12% in terms of F1
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Fig. 3. Graphical representation through t-SNE of the IMMENSE (with focal loss) embeddings for each perspective and for the input of the fusion module (MLP).
Orange data points correspond to risky users, while blue data points correspond to safe users. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

Table 5
Results obtained by the transductive competitor SAIRUS.
SAIRUS
Configuration All users Safe Risky
Prec Rec F1 Acc Prec Rec F1 Prec Rec F1
=128 0.850 0.960 0.900 0.970 1.000 0.970 0.980 0.710 0.940 0.810
= 256 0.870 0.910 0.890 0.970 0.990 0.980 0.980 0.750 0.850 0.800
= 512 0.970 0.780 0.850 0.970 0.970 1.000 0.980 0.970 0.570 0.720

on all users and of 30.54% on risky users, with a dimensionality of
512, when focal loss is adopted. This gain comes with no additional
computational costs for IMMENSE. Actually, it exhibits up to 76.93%
improvement in terms of running times during the prediction phase (see
the last column of Table 6) since it does not need to re-train the node
embedding models on the graph used for the inference phase. Table
7 provides additional details on both training and inference running
times. As it can be noticed, IMMENSE is more efficient then SAIRUS
for both phases, and exhibits very low running times for the inference
phase (at most 12.4 s for a testing network of ~7500 users), making it
practically adoptable in real-world scenarios.

All these results prove the capability of IMMENSE in providing
accurate predictions for this specific task in social networks, properly

10

exploiting the complementary information conveyed by three different
perspectives. The specific comparison with SAIRUS also emphasized
its ability not only to outperform it from a mere viewpoint of the
accuracy of the predictions, but also in terms of sustainability, due to
the significant reduction of the inference time achieved through the
proposed inductive approach.

We finally performed a specific analysis to assess the contribution
of each perspective in discriminating between risky and safe users.
Specifically, in Fig. 3 we report several t-SNE plots [53] depicting the
2D projection of the embeddings identified by the modules devoted to
the analysis of the posted content (C), of social relationships (R), and
of spatial information (S). We also report the 2D projection of the 7-
dimensional feature space that represents the input of the final fusion
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Fig. 4. Graphical representation through LIME of the importance of each input feature of the fusion module (MLP) of IMMENSE (with focal loss), for 2 selected
safe users. User #0 is correctly classified by IMMENSE as safe, while user #1325 is wrongly classified by IMMENSE as risky. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Table 6

Improvements of IMMENSE over SAIRUS. The improvement in terms of running times (running time reduction) refers to the

inference phase.

IMMENSE (with class weighting) vs. SAIRUS

Configuration All users Safe Risky

Prec Rec F1 Acc Prec Rec F1 Prec Rec F1 Time
k.=k, =k, =128 2.94% 1.56% 1.99% 1.03%  0.00% 1.03% 1.01% 5.63% 3.19% 4.44% 75.66%
k. =k, =k; =256 1.15% 7.14% 3.49% 1.03% 1.01% 0.00% 1.01% 1.33% 14.12% 6.53% 73.43%
k.=k,=k;=512 -8.25% 25.64% 9.41% 1.03%  3.09% -2.00% 1.01% -19.59% 71.93% 20.83%  75.93%
IMMENSE (with focal loss) vs. SAIRUS
Configuration All users Safe Risky

Prec Rec F1 Acc Prec Rec F1 Prec Rec F1 Time
k. =k, =k, =128 1529% -11.46% 0.00% 1.03% -2.00% 3.09% 1.02%  38.03% —25.53%  0.00% 71.36%
k.=k, =k, =256 11.49%  4.40% 7.87% 2.06%  0.00% 2.04% 1.53%  25.33% 7.06% 15.59%  76.70%
k. =k, =k,=512 0.00% 23.08% 14.12% 2.06% 2.06% 0.00% 1.53% -2.06% 63.16% 30.54%  76.93%

Table 7

Training and inference times of IMMENSE and SAIRUS for the whole set of users in the training and testing
sets, respectively. Note that SAIRUS requires to partially re-train the model during the inference because of its

transductive nature.

Configuration Training time (s) Inference time (s)
SAIRUS IMMENSE IMMENSE SAIRUS IMMENSE IMMENSE
(class weighting) (focal loss) (class weighting) (focal loss)
k. =k, =k, =128 486.3 357.2 416.3 46.4 10.4 11.2
k, =k, =k, =256 612.5 395.8 454.8 46.4 11.2 12.4
k. =k, =k, =512 874.0 536.4 597.3 51.3 11.3 12.4

module based on the MLP. For the sake of compactness, we only report
the plots obtained when the focal loss is adopted. From the Figure, we
can observe that each perspective alone already provides some useful
information for separating risky and safe users. However, the MLP input
exhibits a very neat separation between the two classes, with only
7 features. These visual results confirm that the three perspectives,
subsequently properly combined by the MLP, provide complementary
information to the fusion module to better discriminate between risky
and safe users, thus confirming our initial intuition behind IMMENSE.

Furthermore, we also selected two safe users and two risky users,
and plotted their corresponding LIME importance scores [54] in Figs.
4 and 5. In particular, Fig. 4 shows the LIME plots for one safe user
(User #0) correctly classified by IMMENSE and one of the few safe
users (User #1325) wrongly classified by IMMENSE as risky. As we can
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see, for User #0, especially with embedding size 512, the consistency
(with the true class) of the meta-features (input features of the MLP)
denoted by the green bar counterbalances the mistakes of other meta-
features, with the reconstruction error of the safe autoencoder being
the most contributing feature for a correct classification. For User
#1325, we see that the error in the classification is mainly due to all
perspectives. A clear imperfect classification based on the content is not
counterbalanced by the other perspectives, which, instead, reinforce
the error. We note that this example was selected on purpose, and
this behavior is not commonly observed in other examples, as F1 and
accuracy scores confirm.

Fig. 5 highlights additional noteworthy cases involving risky users.
Notably, for User #24, the correct classification into the risky class is
strongly supported by almost all meta-features. Only two of them show
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Fig. 5. Graphical representation through LIME of the importance of each input feature of the fusion module (MLP) of IMMENSE (with focal loss), for 2 selected
risky users. User #24 is correctly classified by IMMENSE as risky, while user #689 is wrongly classified by IMMENSE as safe.

a very weak inclination towards classifying the user as safe. Instead, for
User #689 a strong mistake due to the reconstruction error of the safe
autoencoder, which appears lower than that of the risky autoencoder,
is not counterbalanced by other meta-features, leading to a wrong
classification. Again, this example was deliberately selected to illustrate
such behavior, which is not commonly observed across the dataset.

5. Conclusions

In this paper we presented IMMENSE, an inductive learning method
for the identification of risky users in social networks. IMMENSE can
effectively classify unseen nodes by leveraging three perspectives: the
semantics of the content posted by users, their social relationships, and
their spatial closeness.

Our evaluation on a real-world dataset demonstrated that IMMENSE
is able to outperform four state-of-the-art inductive competitors, which
struggle with network sparsity and data imbalance. IMMENSE also
proved to outperform its closest competitor SAIRUS, even if the latter
was run in a more advantageous setting (i.e., transductive), where
nodes in the testing set are known in advance during the training phase.
Such improvements were clear both in terms of predictive accuracy
and in terms of prediction time. These results suggest that IMMENSE
can effectively be used in real-world environments by Law Enforcement
Agencies to counter negative phenomena in social networks.

For future work, we plan to enhance IMMENSE by incorporating
temporal analysis, which would allow tracking changes in user behav-
iors over time. This aspect could support the detection of users with
a safe history who suddenly begin posting negative content or joining
risky communities.
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