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 A B S T R A C T

Online social networks increasingly expose people to users who propagate discriminatory, hateful, and violent 
content. Young users, in particular, are vulnerable to exposure to such content, which can have harmful 
psychological and social repercussions. Given the massive scale of today’s social networks, in terms of both 
published content and number of users, there is an urgent need for effective systems to aid Law Enforcement 
Agencies (LEAs) in identifying and addressing users that disseminate malicious content. In this work we 
introduce IMMENSE, a machine learning-based method for detecting malicious social network users. Our 
approach adopts a hybrid classification strategy that integrates three perspectives: the semantics of the 
users’ published content, their social relationships and their spatial information. Such contextual perspectives 
potentially enhance classification performance beyond text-only analysis. Importantly, IMMENSE employs an 
inductive learning approach, enabling it to classify previously unseen users or entire new networks without 
the need for costly and time-consuming model retraining procedures. Experiments carried out on a real-world 
Twitter/X dataset showed the superiority of IMMENSE against five state of the art competitors, confirming the 
benefits of its hybrid approach for effective deployment in social network monitoring systems.
. Introduction

The significance of social networks in modern society is widely 
ecognized as they enable various activities such as communication, 
etworking, collaboration, and the sharing of news or interests.  In 
ddition, they also enable to perform several kinds of analysis and solve 
ultiple tasks, such as user classification [1,2], profiling [3,4], and 
ecommendation [5–8].
Over time, social media platforms have undergone substantial evo-

ution, allowing users to form multiple types of relationships, for in-
tance, by liking posts, sharing others’ opinions, engaging in real-time 
onversations, and joining groups or communities. Nevertheless, these 
latforms can also be misused for malicious purposes, including (i) dis-
eminating fake news, promoting hate against minorities, and spread-
ng radical ideologies, (ii) assembling like-minded individuals into 
xtremist communities, and (iii) recruiting vulnerable individuals into 
errorist or criminal organizations. In this regard, several reports have 
ighlighted how radicals exploit social media platforms [9,10].

I This article is part of a Special issue entitled: ‘disinformation-toxicity-harms’ published in Online Social Networks and Media.
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To counter this phenomenon, Law Enforcement Agencies (LEAs) 
established dedicated divisions whose job is to detect and take action 
against users who engage in illegal activities. However, social networks 
are dynamic systems in continuous evolution, generating a massive 
amount of data that humans cannot monitor in real time. In this 
scenario, it has become essential to assist LEAs with automated tools ca-
pable of detecting inappropriate content and reporting suspicious users. 
Specifically, for this task, three main dimensions should be taken into 
account: (i) the content generated by users, since it can reveal beliefs 
and intentions; (ii) the social relationships established with other users 
and content thereof (i.e., follows, retweets, likes), to identify silent users 
who do not post inappropriate content but are in touch with other 
users appearing as suspicious; (iii) the spatial relationships, possibly 
established by geographical closeness among users, since dangerous 
nearby users are more willing to join local communities. These three 
dimensions, also referred to as modalities, are usually treated by existing 
approaches for user classification in a separate manner. In particular, 
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most of the existing systems perform the classification based on the 
content published by users [11,12], or solely based on the topology of 
the network established based on social or spatial relationships [13,14]. 
However, online radicalization is a complex phenomenon that involves 
several aspects. Considering only one of them and disregarding the 
others can result in not detecting users who are dangerous under a 
different, unconsidered perspective.

For this reason, hybrid strategies that incorporate a combination 
of different modalities for analyzing social networks have been pro-
posed. These strategies have been successfully used in various user 
classification tasks in social networks, showing improved performance 
compared with tools that use a single modality/perspective.  Among 
them, focusing on methods aiming to identify suspicious users, that 
is the goal of the method proposed in the present paper, the method 
proposed in [1], called SAIRUS, can be considered the first approach 
that simultaneously leverages the three aspects mentioned above in 
a multimodal fashion. However, SAIRUS is limited in the approach 
adopted to represent nodes, as it operates under a transductive [15] 
setting. In this setting, a classification model is learned from a network 
containing both labeled and unlabeled nodes, and is then exploited to 
assign labels to the unlabeled nodes (see Fig.  1(a)). Thus, when training 
models in such a setting, nodes that need to be labeled have to be 
already available at training time. As a consequence, it is impossible to 
classify any node that has not been observed during the training phase. 
It is therefore noteworthy that a transductive approach cannot be easily 
adopted in a real-world scenario, since LEAs would need to retrain the 
model every time a new user needs to be assessed.

To overcome this limitation, in this paper we propose IMMENSE 
(Inductive Multi-perspective Model for usEr classificatioN in Social 
nEtworks), a new multimodal approach that works in the inductive
setting. In particular, IMMENSE learns a model from a labeled network 
of users provided at training time, that is able to generalize to new, 
unseen nodes by leveraging the different modalities considered (see 
Fig.  1(b)). To the best of our knowledge, no existing technique is able 
to solve the suspicious user identification task in such a setting, si-
multaneously leveraging the above-mentioned modalities/perspectives 
(content, social relationships, and spatial relationships). Therefore, the 
main contributions of this paper can be summarized as follows:

• we propose the novel method IMMENSE that can be considered 
among the first approaches that consider multiple perspectives, 
i.e., the posted content, the social relationships, and the spa-
tial relationships, for the identification of risky users in social 
networks;

• methodologically, IMMENSE is able to work in the inductive 
setting, enabling the learned model to be directly adopted for 
making predictions on new users who have not been observed 
during the training;

• as a consequence, IMMENSE promotes model reusability and, 
therefore, the sustainability of AI systems, since, in real-world 
environments, making predictions for a batch of new users does 
not require to re-train a model from scratch.

The remaining of the paper is organized as follows: in Section 2 
we briefly discuss some related work; in Section 3 we describe the 
details of the proposed approach; in Section 4 we describe the results 
of our experimental evaluation; finally, in Section 5 we draw some 
conclusions and outline possible future works.

2. Related work

Since this work has its roots in the node classification task for 
network data, in the following subsection we briefly describe some of 
the existing transductive and inductive techniques for solving such a 
task. Then, we provide an overview of existing approaches for user 
classification in social networks.
2 
Fig. 1. A graphical representation of the transductive (on the top) and 
inductive (on the bottom) learning settings. White nodes represent unlabeled 
nodes.

2.1. Transductive and inductive learning for network data

Early techniques for solving machine learning tasks from network 
data rely on identifying a numerical representation of nodes (node em-
beddings) in a transductive setting [16–20], and learning a predictive 
model on top of such representations. These techniques are well-suited 
for scenarios where the network is only partially labeled and the con-
sidered task consists of labeling observed nodes only. In this context, 
pioneering methods for learning node embeddings are DeepWalk [21] 
and Node2Vec [22], both based on random walks. Nevertheless, we 
can also find methods working in the transductive setting that directly 
classify unlabeled nodes without performing a preliminary embedding 
phase. An example is GNetMine [13], which works with heterogeneous 
networks, performing label propagation across nodes of different types.

On the other hand, techniques able to identify node embeddings 
in an inductive setting aim to learn a decision function across the 
entire data space, thus enabling the generalization to unseen nodes that 
possess similar types of features. One of the most popular approaches is 
GraphSAGE [23], which operates in an iterative fashion. In particular, 
it aggregates the features of the nodes in the immediate neighborhood 
of the node being represented: At each iteration, the representation of a 
given node at the previous iteration is concatenated with that obtained 
through the aggregation of the representations of its neighboring nodes, 
and processed by a nonlinear activation function to compute the new 
representation. In the inference phase, the learned model is applied to 
represent a new (unseen) node, also aggregating information from its 
local neighborhood.

More recently, the method Heterogeneous Graph Transformer [24] 
(HGT) has been specifically proposed for the analysis of heterogeneous 
graphs. To model heterogeneity, HGT employs multiple parameters that 
are node-type and edge-type dependent to characterize the heteroge-
neous attention over each edge, empowering it to maintain dedicated 
representations for different types of nodes and edges.
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Another method that works in the inductive learning setting is 
AGAIN [25]. It combines a sampling approach with an attention-based 
strategy. During the sampling phase, a fixed number of neighbors 
are selected, with the size varying according to the search depth. 
Then, during the aggregation, an attention mechanism assigns different 
learnable weights to the neighbors, indicating their relative importance 
for the embedding of a given node.

Finally, it is worth mentioning RIO-GNN [26], an inductive node 
embedding framework for multi-relational graphs. Its architecture con-
sists of three modules: the first measures the similarity among training 
instances sharing the same label; the second uses these similarity values 
to sample, for each instance, a set of closest neighbors under each 
relationship; the third aggregates neighbor information across relations 
to obtain a comprehensive embedding.

In the literature, we can also find approaches capable of operating 
in both inductive and transductive settings. An example is represented 
by the popular Graph Attention Networks (GATs) [27], which calculate 
node representations using multi-head attention [28]. In the transduc-
tive setting, GATs process the entire network simultaneously, learning 
attention weights that model the relative importance of node relation-
ships in the existing graph structure. However, GATs do not require 
that all nodes are available during training, as their shared attention 
mechanisms can generalize to unseen nodes. When new nodes become 
available, the learned attention functions are applied inductively to 
process their neighborhood structures and properties.

Another approach capable of operating in both settings is Graph 
Extrapolation Network [29], having the goal to perform Out Of Graph 
(OOG) link prediction. The representation for a new node is computed 
by exploiting the features of its neighboring nodes and edges. At 
training time, in order to incorporate knowledge about the relationships 
between unseen nodes, a transductive component is employed. This 
involves aggregating the representations of neighboring nodes, also 
considering unseen nodes, which are generated/simulated at training 
time via a meta-learning framework.

2.2. User classification in social networks

The user classification task aims at predicting a label for unlabeled 
users in a network, based on their properties. The labels may vary 
depending on the specific considered problem. Existing user classi-
fication techniques fall into three categories, namely: content-based, 
topology-based, and hybrid.

Content-based approaches classify users by relying exclusively on 
their published content.

For example, in [2] the authors aim at detecting bot accounts. 
Users are represented as a document obtained by concatenating their 
published posts. Documents are divided into a fixed set of chunks 
and, for each term in the vocabulary, its occurrences in every chunk 
are counted, obtaining a matrix for each document, where the rows 
represent chunks and columns represent the number of occurrences in 
a chunk. A weighting scheme is then used to adjust the term signals 
to better capture differences between human and bot-generated texts. 
The signals are decomposed via wavelet transform functions and, lastly, 
a set of features is extracted from the transformed matrix and fed to 
a classifier (authors experimented with MLPs and random forests) for 
learning a binary classification model.

A content-based user classification approach was also used for 
predicting the political affiliation of Twitter users [30]. The authors 
adopted a two-step approach: first, they use a model based on Bi-LSTM 
and attention, trained on a corpus of tweets wrote by members of 
the U.S. Congress, for computing the probability of a single tweet to 
be associated with the democratic or the republican party. Then, for 
each user, they average the probabilities computed for their tweets and 
compute additional statistics, such as standard deviation, minimum, 
maximum, median, first quartile, third quartile, proportion of tweets 
with a high probability (>0.6) of being Republican/Democratic. A 
3 
Support Vector Machine is then used to predict the user’s political 
affiliation based on these features.

Shifting to focus on topology-based classification approaches, it is 
worth noting that they aim to solve the learning task by performing 
exclusively the analysis of the topology of the network of relationships. 
State-of-the-art approaches are mainly based on graph neural networks 
(GNN) [31], which leverage the properties of the graph to create 
meaningful representations of nodes (users, in this case), edges (rela-
tionships among users), and even the whole graph (the whole social 
network). In [32] the authors purposely ignored node features to rely 
solely on the network topology, aiming to show the importance of node 
connections for user classification. They compared the performance of 
a model based on harmonic functions [33] with two GNN variants, 
namely, Graph Convolutional Networks (GCNs) [34] and Graph At-
tention Networks (GATs) [27], where the value of node features is 
purposely set to zero. All three classifiers achieved good results in terms 
of accuracy, with the harmonic classifier slightly outperforming the two 
competitors, possibly because natively based on network connections 
instead of node features.

Topology-based approaches have also been investigated for the ex-
ploitation of the spatial information. An example is [35], where the goal 
is to detect areas at higher risk for dengue. The authors analyzed tweets 
published by users who mentioned having personal experience with 
the disease. Clustering was performed using the geolocations associated 
with the tweets, followed by the application of two probabilistic models 
to identify spatial regions with a higher risk of infection.

Finally, hybrid approaches aim to combine the contribution pro-
vided by the content posted by users with that of the network topology.

An example of hybrid approach is Gitsec [36], a classification 
system for Github users, aimed at detecting malicious accounts on 
the platform. The framework solves classification tasks by taking into 
account the descriptive features about the accounts, their activity, and 
two networks: a user-repository graph, that tracks the way each user 
interacts with repositories, and a user-user graph, that describes the 
interactions among users. Methodologically, Gitsec uses two separate 
PLSTM networks connected with the attention mechanism to analyze 
data about the user activity. A GNN model based on GraphSAGE 
produces a prediction for the users based on the user-repo graph. 
The user-user graph is also analyzed and five structural features are 
obtained for each user. The outputs of these modules, together with the 
descriptive features of a user, are then fed to a decision maker, such as 
XGboost, to provide the final prediction for the users.

In [37], the authors propose a hybrid user classification framework 
that considers profile features, user generated content, social relation-
ships and social interactions. The proposed system is made of a static 
module, that extracts statistical features from user profiles and user 
generated content. A second parallel module based on LSTM extracts 
dynamic features from user interactions. The two features sets are fed 
to an XGBoost based classifier to provide the final prediction.

Hybrid approaches can also be in the form of general-purpose 
methods able to solve classification tasks in the relational setting, where 
each perspective is modeled through one or more tables of a relational 
database. A relevant example is the system Re3py [38], a classification 
system based on ensembles of relational decision trees. The method first 
generates complex aggregate features by navigating foreign key paths 
involving multiple database tables. Then, a predictive model is learned 
via top-down induction of decision tree ensembles, that exploit both the 
original features and the generated ones. In the same category, we can 
also find the system Mr-SBC [39], a probabilistic approach that extends 
the naïve Bayes classifier to handle multirelational settings represented 
as database tables connected by foreign key constraints. The posterior 
probabilities are computed using first-order classification rules that are 
learned during the training phase.

It is noteworthy that most of the existing works primarily consider 
the content posted by users. While some approaches consider the rela-
tionships, they often create artificial links based on similarity measures 
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Fig. 2. Schema of the IMMENSE framework.
or the co-occurrence of words, rather than explicitly modeling real rela-
tionships among users. Moreover, possible spatial relationships among 
users are almost always ignored. Finally, general-purpose relational 
methods, like those mentioned before [38,39], do not explicitly capture 
the semantics of the posted content, but represent it only through a 
simple document-word table of a relational database.

To the best of our knowledge, only one existing method [1] fully 
integrates the three aspects considered in this paper, also providing 
the right importance to the semantic of the content posted by users. 
However, as introduced in Section 1, it exhibits the limitation of 
transductive approaches, i.e., it cannot perform predictions for new 
users that have not been observed during the training phase, without 
re-training the whole model from scratch. On the contrary, the method 
IMMENSE proposed in this paper fully exploits these three perspective 
in an inductive learning setting.

3. The proposed method IMMENSE

Before describing the proposed method, we formalize some key 
aspects of the task we intend to solve. Specifically, we define a social 
network as ⟨𝑁,𝐶,𝐸𝐶 , 𝐸𝑇 ⟩, where:

• 𝑁 is the set of nodes, each representing a user. Users can be 
labeled as safe (𝑆) or risky (𝑅). We refer to the former as 𝑁 (𝑆)

and to the latter as 𝑁 (𝑅). Some users may not be labeled (i.e., their 
label is unknown), meaning that 𝑁 (𝑆) ∪𝑁 (𝑅) ⊆ 𝑁 .

• 𝐶 is the set of textual contents posted by users. The geographical 
position from which the content was posted may be available.

• 𝐸𝐶 ⊆ 𝑁 × 𝐶 is the set of relationships that link the users to the 
textual content they posted.

• 𝐸𝑇 ⊆ 𝑁 × 𝑁 is the set of topological social connections among 
users. These relationships are represented by directed links, since 
are not necessarily symmetric (e.g., if user 𝐴 follows user 𝐵, it 
does not imply that user 𝐵 follows user 𝐴).

Since we work in a supervised inductive setting, the training phase 
exclusively involves labeled users. By leveraging their content, their 
social relationships and their geographical proximity, we train a model 
to accurately map users to their respective labels, ensuring it can 
generalize to new, unseen users.

The general architecture of the proposed method IMMENSE is de-
picted in Fig.  2, which shows its three main components, specialized for 
the analysis of the three considered perspectives. A final model fusion 
step is then performed to combine the contribution of such components. 
In the following subsections we describe and discuss each phase in 
detail.
4 
3.1. Semantic content analysis of the textual content

This phase analyzes the textual content to generate a user profile 
and to assign a label according to such a perspective. Specifically, we 
process the textual content produced by users on the social network, 
applying a preprocessing pipeline that includes tokenization, stopword 
removal, and stemming. The resulting posts are then concatenated 
into a single document for each user, following their chronological 
ordering. In this way, IMMENSE can also indirectly take into account 
the way in which the content posted by the user evolved over time. 
This is possible through the adoption of a Word2Vec model [40], 
which is trained to map each word, considering its context in the 
text, into a 𝑘𝑐 -dimensional semantic space. By leveraging the additive 
compositionality property of word embeddings [41], we compute an 
embedding vector for each available user. This property allows the 
user’s embedding to be represented as the sum of the embeddings of the 
words in their posted contents. Note that to perform this step, also more 
recent approaches based on BERT or large language models (LLMs) 
could be used, but we stick with Word2Vec as it demonstrated superior 
accuracy in previous studies [42,43]. Moreover, learning a Word2Vec 
embedding is considerably less computationally intensive than training 
models like BERT or LLMs.

Subsequently, we use the obtained embeddings to train two distinct 
one-class classifiers (one for each class), which are based on stacked 
autoencoders [44]. An autoencoder is a model that compresses the 
input into a lower-dimensional representation through an encoder and 
then reconstructs the original input using a decoder. Formally, given 
an input 𝑋, an autoencoder learns an encoding function 𝑒𝑛 ∶ 𝑋 → 𝑋′

and a decoding function 𝑑𝑒𝑐 ∶ 𝑋′ → 𝑋 such that:
(𝑒𝑛, 𝑑𝑒𝑐) = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑒𝑛,𝑑𝑒𝑐)‖𝑋 − 𝑑𝑒𝑐(𝑒𝑛(𝑋))‖2

In other words, the goal is to minimize the reconstruction error, 
which indicates how much the actual input differs from the reconstruc-
tion. In our model, the encoder is made of the input layer followed 
by two linear layers whose dimension is respectively one half and one 
fourth of the input. The decoder’s layers mirror the structure of the 
encoder, so that the output has the same dimension as the input. Each 
layer adopts the ReLU as non linear activation function.

We employ one autoencoder trained on the embeddings of users 
labeled as risky and one autoencoder trained on those labeled as safe. 
Each user’s representation is fed into both autoencoders, and their 
respective reconstruction errors, denoted as 𝑅𝑅 and 𝑅𝑆 , are computed 
as the mean squared error between the input and the output vectors. 
The semantic content analysis module outputs these two reconstruction 
error values, along with a label 𝐿(𝑐𝑜𝑛). The label is assigned a value 
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of 0 (safe) if 𝑅𝑅 < 𝑅𝑆 ; otherwise, it is set to 1 (risky). The adoption 
of two separate autoencoders, rather than a single binary classifier, is 
motivated by the fact that they tend to provide a higher accuracy in 
presence of class imbalance [45], which is the situation we face in our 
scenario.

3.2. Network topology analysis of user social relationships

This component analyzes the relationships between users in the 
social network. Specifically, the user relationships can be represented 
by an adjacency matrix 𝐴 ∈ {0, 1}|𝑁|×|𝑁|, where 𝐴𝑖𝑗 = 1 if user 
𝑁𝑖 follows1 user 𝑁𝑗 , 0 otherwise. However, this matrix would have 
an extremely high dimensionality with significant sparsity, making it 
impractical to process. This occurs because, in most social networks, 
each user is connected with only a small fraction of the total users in 
the network, resulting in many entries of the adjacency matrix being 
zero. To address this issue, before learning a predictive model, we aim 
to identify a lower-dimensional, denser, feature space, of dimension 𝑘𝑟, 
representing the network of relationships of each user. For this purpose, 
we adopt GraphSAGE [23], that generates embeddings for nodes in a 
network in an iterative fashion, also exploiting the features of the nodes 
coming from the local neighborhood.

Formally, at the 𝑖th iteration and for each user 𝑣 ∈ 𝑁 , its embedding 
ℎ𝑖𝑣 is computed also considering its neighborhood 𝑁(𝑣). In particu-
lar, we first produce an aggregated vector representation ℎ𝑖 (𝑣)

 of its 
neighborhood at the 𝑖th iteration as: 

ℎ𝑖 (𝑣) =

∑

𝑢∈ (𝑣)
ℎ𝑢

𝑖−1

| (𝑣)|
(1)

Then, the current step user representation ℎ𝑖𝑣 is obtained by concate-
nating its previous representation ℎ𝑖−1𝑣  to the aggregated neighborhood 
information ℎ𝑖 (𝑣)

 and by feeding the obtained vector through a fully 
connected layer, whose weights are updated in the training phase, with 
nonlinear activation function 𝜙 (in our case, the ReLU function): 
ℎ𝑖𝑣 = 𝜙

(

𝐖𝑖 ⋅ 𝐶𝑂𝑁𝐶𝐴𝑇
(

ℎ𝑣
𝑖−1, ℎ𝑖 (𝑣)

))

(2)

where 𝐖𝑖 is a learnable weights matrix. The obtained user represen-
tation serves as input for subsequent iterations in the algorithm, each 
of which is performed by a GraphSAGE layer. Therefore, the number 
of iterations corresponds with the number of GraphSAGE layers used 
to generate the final node embedding, as well as to the depth in 
the network reached when representing each node: each additional 
GraphSAGE layer expands the node’s informational reach by one hop, 
effectively broadening the considered neighborhood. This layered ap-
proach allows the algorithm to capture increasingly complex structural 
information from the graph, enhancing the richness of the resulting 
embeddings.

In IMMENSE we construct a graph where users are connected based 
on their relationships in the analyzed social network. Each node (user) 
in the graph is associated with features corresponding to the user’s 
semantic representation obtained in the previous phase of the method. 
It is noteworthy that this choice may appear to possibly introduce some 
redundancies with respect to the semantic analysis module. However, it 
is noteworthy that users tend to connect with others who share similar 
views and beliefs, which are primarily expressed through contents 
posted on social media platforms. By integrating the features extracted 
from the content, we not only capture the structure of connections, 
but also the underlying reasons for these connections. This approach 
enables a more comprehensive understanding of the network, where 
topology and content mutually inform one another. Essentially, we 

1 In this formalization, we use the follows relationship as an illustrative 
example. More generally, any asymmetric or symmetric relationship (the latter 
achieved by duplicating links) can be modeled in a similar way.
5 
argue that these features do not introduce substantial redundancy in 
the representation; instead, they enhance the topological analysis by 
incorporating semantic information that captures the real-world factors 
driving network formation.

In IMMENSE we train GraphSAGE in a supervised manner to in-
corporate user labels from this early stage of the embedding. This 
approach helps the model to build a representation that facilitates 
reliable classification in the subsequent steps. To this end, our training 
architecture consists of three layers, where the first two layers are 
devoted to capturing the features of neighboring nodes of up to hops in 
the network, while the final is a linear layer with log-softmax activation 
function to output the predicted log-probabilities of the node to belong 
to the safe and risky class. The prediction is used to compute the loss, 
which is then backpropagated during training.

Another important aspect to consider, already mentioned before, is 
that the task being tackled is inherently imbalanced. While it is diffi-
cult to quantify precisely how much content on social media reflects 
extremist or discriminatory ideologies, it is reasonable to assume that 
such content represents only a small minority of the overall material 
available online. Hence, during the learning phase, users cannot be 
treated equally, as the safe class significantly outnumbers the risky
class. This imbalance could lead the model to develop a bias towards 
the majority class [46]. As a consequence, errors made during the 
predictions cannot be treated equally, because misclassifying a risky 
user as safe is much more dangerous than mistakenly predicting that 
a safe user is risky. To address class imbalance, we consider two 
alternative strategies:
∙ Class Weighting. This strategy consists in using a weighting schema 
based on inverse class frequency. In particular, it assigns a weight 
to each instance, which is inversely proportional to the number of 
instances belonging to the same class in the training set. More formally:

𝑤𝑒𝑖𝑔ℎ𝑡𝑟𝑖𝑠𝑘𝑦 =
|𝑁|

|𝑁 (𝑅)
|

𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑎𝑓𝑒 =
|𝑁|

|𝑁 (𝑆)
|

(3)

As training loss function we employ the negative log likelihood. The 
weights are incorporated into the training loss to give a higher penalty 
to the model when, during training, it misclassifies instances belonging 
to the minority class. Formally, let 𝑝𝑖,𝑦𝑖  be the predicted probability that 
the model assigns to the 𝑖th instance 𝑥𝑖 of belonging to the true class 
𝑦𝑖, the loss is defined as: 

(𝑥𝑖) = −𝑤𝑒𝑖𝑔ℎ𝑡𝑦𝑖 ⋅ 𝑙𝑜𝑔(𝑝𝑖,𝑦𝑖 ) (4)

where 𝑤𝑒𝑖𝑔ℎ𝑡𝑦𝑖 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑟𝑖𝑠𝑘𝑦 if 𝑦𝑖 = 0, otherwise 𝑤𝑒𝑖𝑔ℎ𝑡𝑦𝑖 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑎𝑓𝑒.

∙ Focal loss. This strategy employs the focal loss [47], that is a training 
loss function that directly accounts for the imbalance. It is a variant of 
the standard cross entropy function, defined as: 

(𝑥𝑖, 𝑟𝑖𝑠𝑘𝑦) = −𝛼𝑟𝑖𝑠𝑘𝑦(1 − 𝑝𝑖)𝛾 ⋅ 𝑙𝑜𝑔(𝑝𝑖) (5)

where 𝛼𝑟𝑖𝑠𝑘𝑦 is a balancing weight, 𝛾 ≥ 0 is the focusing tunable 
parameter, and 𝑝𝑖 is computed as: 

𝑝𝑖 =

{

𝑝𝑖 if 𝑦 = 𝑟𝑖𝑠𝑘𝑦
1 − 𝑝𝑖 otherwise

(6)

In practice, the focal loss penalizes wrong false negatives on which 
the model has high confidence.

Once trained, the node classifier is used to compute, for each user 
𝑢 in the training set, two probability values, respectively 𝑃 𝑟𝑒𝑙

𝑠 (𝑢) and 
𝑃 𝑟𝑒𝑙
𝑟 (𝑢), which are the predicted probabilities that the user 𝑢 has of being 
safe or risky, based only on its social connections in the graph. Such 
probability values are the output of the relational analysis module, and 
will be subsequently used in the model fusion phase.
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3.3. Analysis of the user spatial closeness

This module is devoted to the analysis of the spatial closeness 
among users in the social network. While we again use an adjacency 
matrix to represent spatial relationships, the approach slightly differs 
from that adopted in the previous module. In particular, we construct 
a matrix 𝑆 ∈ [0, 1]|𝑁|×|𝑁|, where, unlike the matrix 𝐴 containing binary 
values used for the analysis of user relationships, each cell 𝑆𝑖𝑗 contains 
a continuous closeness score in [0, 1]. This score quantifies the spatial 
proximity between users 𝑖 and 𝑗, providing a granular representation 
of their spatial relationships.

To compute the closeness score, we approximate the position of 
each user by identifying the most frequent location associated with 
his/her posted contents. We opt for the most frequent location rather 
than other possible aggregations of locations, such as the average 
latitude/longitude, as the latter could potentially generate coordinates 
corresponding to a place where the user has never actually been.

Using these locations, we then compute the geodetic distance be-
tween the users of the social network. Specifically, given two users 
𝑢1, 𝑢2 with their latitudes 𝜙1, 𝜙2 and their longitudes 𝜆1, 𝜆2, the distance 
𝑑(𝑢1, 𝑢2) is given by: 

𝑑(𝑢1, 𝑢2) = 2𝑟 ⋅ arctan
⎛

⎜

⎜

⎝

√

𝑎(𝑢1, 𝑢2)
1 − 𝑎(𝑢1, 𝑢2)

⎞

⎟

⎟

⎠

(7)

where 𝑟 is the Earth radius (≈6371 km) and 𝑎(𝑢1, 𝑢2) = sin2
(

𝜙1−𝜙2
2

)

+

cos(𝜙1) ⋅cos(𝜙2) ⋅sin
2
(

𝜆1−𝜆2
2

)

. To obtain a closeness score from such dis-
tance values, we need to compute the z-normalized distances 𝑧(𝑢1, 𝑢2). 
First we define the mean 𝜇𝑑 and the standard deviation 𝜎𝑑 of the 
distances as: 

𝜇𝑑 = 1
|𝑁|

⋅
∑

𝑎,𝑏∈𝑁,𝑎≠𝑏
𝑑(𝑎, 𝑏) 𝜎𝑑 =

√

∑

𝑎,𝑏∈𝑁,𝑎≠𝑏(𝑑(𝑎, 𝑏) − 𝜇𝑑 )2

|𝑁|

(8)

Then, the z-score normalized distance among users (𝑢1, 𝑢2) is computed 
as: 

𝑧(𝑢1, 𝑢2) =
𝑑(𝑢1, 𝑢2) − 𝜇𝑑

𝜎𝑑
(9)

This allows us to distinguish between users who are closer than the 
average and those who are farther than the average. More formally, 
since two users 𝑢1, 𝑢2 are closer than the average if 𝑧(𝑢1, 𝑢2) < 0, we 
compute the closeness score in [0, 1] as follows: 

𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠(𝑢1, 𝑢2) =

{ 𝑧(𝑢1 ,𝑢2)
𝑚𝑖𝑛𝑧

if 𝑧(𝑢1, 𝑢2) < 0

0 otherwise
(10)

where 𝑚𝑖𝑛𝑧 represents the minimum (most negative) z-normalized dis-
tance observed across all user pairs in the network. This normalization 
ensures that the user pair with the smallest z-score (i.e., the geograph-
ically closest pair) receives a closeness score of 1, while pairs with 
positive z-scores (farther than average) receive a closeness score of 0.

The obtained spatial adjacency matrix is used to build a graph, 
where two users 𝑢1, 𝑢2 are connected when 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠(𝑢1, 𝑢2) > 0, with 
a weight equal to 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠(𝑢1, 𝑢2). We employ GraphSAGE also in 
this case, to extract 𝑘𝑠 dimensional embeddings of nodes. Note that a 
given user who never shares his/her geographical information in any of 
his/her posted content will appear as isolated, namely, spatially distant 
from all the other users. In this case, the embedding identified through 
GraphSAGE for the spatial dimension will solely rely on his/her initial 
features, that, as detailed in Section 3.2, are based on the embedding 
of the posted content.

To account for the class imbalance, we adopt the same strategies as 
we defined for the network topology analysis (see Section 3.2).

This module outputs, for a given user 𝑢, the probabilities 𝑃 𝑠𝑝
𝑠 (𝑢) and 

𝑃 𝑠𝑝
𝑟 (𝑢), that are the predicted probabilities that the user is safe or risky, 
respectively, based on spatial relationships.
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Table 1
Quantitative information about the considered dataset.
 Users 37 945
 Risky users 2 807
 Safe users 35 138
 Users with spatial information 1 043
 Avg document length 136
 Avg social following per user 16
 Avg followers per user 2

3.4. Model fusion

The final module of our method IMMENSE combines the outputs of 
the three previous modules, to assign a definitive label to each user. 
Specifically, in this phase, we train a Multi-Layer Perceptron (MLP) 
that acts as a meta-model, considering the following input features: 
the risky and safe autoencoders reconstruction errors 𝑅𝑅, 𝑅𝑆 , along 
with the label 𝐿(𝑐𝑜𝑛) from the semantic content analysis; the predicted 
label probabilities of the user being risky or safe, respectively 𝑃 𝑟𝑒𝑙

𝑠 (𝑢)
and 𝑃 𝑟𝑒𝑙

𝑟 (𝑢), from the analysis of social relationships; the predicted 
probabilities 𝑃 𝑠𝑝

𝑠 (𝑢) and 𝑃 𝑠𝑝
𝑟 (𝑢), of the user being risky or safe, based 

on the analysis of the user spatial closeness.
The MLP has one hidden layer with the sigmoid activation function, 

which allows it to capture possible nonlinear dependencies between 
input and output variables. Since we are dealing with a classification 
task, the final layer adopts the softmax activation function, which 
outputs the predicted probabilities of each user to belong to one class 
or the other. Given that the outputs are probabilistic, we train the MLP 
using the negative log likelihood as loss function.

We remind that our task is strongly imbalanced. Therefore, also the 
MLP adopted for the model fusion is trained using one of the strategies 
outlined in Section 3.2.

4. Experiments

In order to evaluate the effectiveness of the proposed method IM-
MENSE, we performed an extensive set of experiments. In the following 
subsections, we first provide some details about the considered dataset, 
then we describe the considered competitor systems and the exper-
imental setting. Finally, we report and discuss the obtained results. 

4.1. The considered dataset

The dataset for our experimental evaluation was built on the basis 
of a list of keywords related to radicalism and on a set of known 
radical/risky posts 𝐷𝑅, provided in the context of the Horizon 2020 
project CounteR2 by various Law Enforcement Agencies (LEAs). Using 
the Twitter API, we retrieved up to 1500 tweets for each keyword, 
covering the period from February 6th, 2022 to February 6th, 2023. For 
each author of the downloaded tweets, we then retrieved a list of their 
followers, limited to a maximum of 1000 due to API usage restrictions. 
This process allowed us to create a network of social relationships. 
We finally kept only users who follow more than 5 other users in the 
obtained list of users, and retrieved up to 20 of the most recent tweets 
for each user in the network.

To define the ground truth, we adopted the following procedure. 
We employed a pre-trained Word2Vec model3 to process the dataset 
𝐷𝑅, extracting |𝐷𝑅| risky embeddings. We then aggregated these em-
beddings to obtain a global risky vector 𝑣𝑅, by summation. In the same 
way, we obtained an embedding for each user, based on his/her posts. 
We then measured the similarity between 𝑣𝑅 and the embedding of 

2 https://counter-project.eu/.
3 https://code.google.com/archive/p/word2vec/.

https://counter-project.eu/
https://code.google.com/archive/p/word2vec/
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Table 2
Results obtained by IMMENSE (with class weighting). The best result in terms of F1 is shown in bold.
 IMMENSE: 𝑘𝑐 = 𝑘𝑟 = 𝑘𝑠 = 128

 Configuration All users Safe Risky

 C R S Prec Rec F1 Acc Prec Rec F1 Prec Rec F1

 ✓ 0.765 0.960 0.829 0.940 1.000 0.940 0.970 0.530 0.980 0.688 
 ✓a 0.775 0.950 0.834 0.940 1.000 0.940 0.969 0.550 0.960 0.699 
 ✓ 0.720 0.940 0.779 0.910 1.000 0.910 0.953 0.440 0.970 0.605 
 ✓a 0.700 0.935 0.750 0.900 1.000 0.890 0.940 0.400 0.980 0.560 
 ✓ 0.775 0.955 0.836 0.940 1.000 0.940 0.969 0.550 0.970 0.702 
 ✓a 0.795 0.940 0.850 0.750 0.990 0.950 0.970 0.600 0.930 0.730 
 ✓ ✓ 0.875 0.975 0.918 0.980 1.000 0.980 0.990 0.750 0.970 0.846 
 ✓ ✓ 0.840 0.975 0.891 0.970 1.000 0.970 0.980 0.680 0.980 0.803 
 ✓ ✓ 0.715 0.940 0.773 0.910 1.000 0.900 0.947 0.430 0.980 0.598 
 ✓ ✓ ✓ 0.875 0.975 0.918 0.980 1.000 0.980 0.990 0.750 0.970 0.846 
 IMMENSE: 𝑘𝑐 = 𝑘𝑟 = 𝑘𝑠 = 256

 Configuration All users Safe Risky

 C R S Prec Rec F1 Acc Prec Rec F1 Prec Rec F1

 ✓ 0.820 0.975 0.879 0.960 1.000 0.960 0.980 0.640 0.990 0.777 
 ✓a 0.940 0.900 0.919 0.980 0.990 0.990 0.990 0.890 0.810 0.848 
 ✓ 0.745 0.940 0.802 0.930 1.000 0.930 0.964 0.490 0.950 0.640 
 ✓a 0.745 0.940 0.805 0.930 1.000 0.930 0.964 0.490 0.950 0.647 
 ✓ 0.730 0.945 0.791 0.920 1.000 0.910 0.953 0.460 0.980 0.630 
 ✓a 0.735 0.950 0.797 0.920 1.000 0.920 0.958 0.470 0.980 0.635 
 ✓ ✓ 0.875 0.975 0.918 0.980 1.000 0.980 0.990 0.750 0.970 0.846 
 ✓ ✓ 0.850 0.980 0.902 0.970 1.000 0.970 0.985 0.700 0.990 0.820 
 ✓ ✓ 0.745 0.950 0.805 0.930 1.000 0.930 0.960 0.490 0.970 0.650 
 ✓ ✓ ✓ 0.880 0.975 0.921 0.980 1.000 0.980 0.990 0.760 0.970 0.852 
 IMMENSE: 𝑘𝑐 = 𝑘𝑟 = 𝑘𝑠 = 512

 Configuration All users Safe Risky

 C R S Prec Rec F1 Acc Prec Rec F1 Prec Rec F1

 ✓ 0.850 0.975 0.901 0.970 1.000 0.970 0.985 0.700 0.980 0.817 
 ✓a 0.850 0.975 0.901 0.970 1.000 0.970 0.985 0.700 0.980 0.817 
 ✓ 0.710 0.940 0.769 0.910 1.000 0.900 0.950 0.420 0.980 0.588 
 ✓a 0.705 0.935 0.760 0.900 1.000 0.890 0.942 0.410 0.980 0.578 
 ✓ 0.710 0.940 0.769 0.900 1.000 0.900 0.947 0.420 0.980 0.590 
 ✓a 0.690 0.935 0.745 0.890 1.000 0.880 0.940 0.380 0.990 0.549 
 ✓ ✓ 0.880 0.975 0.921 0.980 1.000 0.980 0.990 0.760 0.970 0.852 
 ✓ ✓ 0.880 0.975 0.918 0.980 1.000 0.980 0.990 0.750 0.970 0.846 
 ✓ ✓ 0.725 0.945 0.785 0.910 1.000 0.910 0.953 0.450 0.980 0.617 
 ✓ ✓ ✓ 0.890 0.980 0.930 0.980 1.000 0.980 0.990 0.780 0.980 0.870 
a For IMMENSE configurations represents the adoption of its C, R, and S modules without the fusion module.
each user using cosine similarity. If this similarity exceeded a specified 
threshold 𝛿, the user was labeled as risky in the ground truth, otherwise 
it was labeled as safe. In this way, we quantify how much the user’s 
posts are close to actual risky posts. More formally, for each user 𝑢, we 
assigned a label as: 

𝑙𝑎𝑏𝑒𝑙(𝑢) =

{

𝑟𝑖𝑠𝑘𝑦 if 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑣𝑢, 𝑣𝑅) ≥ 𝛿
𝑠𝑎𝑓𝑒 otherwise

(11)

where 𝑣𝑢 is the embedding of the content posted by the user 𝑢. After 
analyzing the distribution of similarity values, we set the threshold 𝛿
to 0.88, which results in approximately 7% of users being labeled as
risky, which can be considered a reasonable proportion in this context 
according to the LEAs (consider that the corpus is retrieved starting 
from an expert-defined set of keywords). Finally, we incorporated an 
additional step that considers the social relationships of users alongside 
their content. After the initial labeling based on the similarity with 
the 𝑣𝑅 semantic vector, we examined the network of relationships of 
users labeled as safe. Any of these users having more than 10% of their 
relationships with risky users were relabeled as risky.

In Table  1, we show some quantitative information about the 
dataset. From the table, we can observe that the information about the 
geographical position is available only for a small subset of users.
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4.2. Experimental setting and competitors

Our experiments were carried out by splitting the dataset into 
training (80% of the users) and testing (20% of the users) sets. The 
split was made so that the two sets have no common user. In this way, 
we properly evaluate the inductive capabilities of the system, namely, 
its ability to effectively generalize to new users, who were not observed 
during the training phase.

We experimented with three different values of the embedding di-
mensionality for the textual content 𝑘𝑐 , for the network of relationships 
𝑘𝑟, and for the spatial dimension 𝑘𝑠. Specifically, we evaluated the 
following settings: 𝑘𝑐 = 𝑘𝑟 = 𝑘𝑠 = 128, 𝑘𝑐 = 𝑘𝑟 = 𝑘𝑠 = 256, and 𝑘𝑐 = 𝑘𝑟 =
𝑘𝑠 = 512. We choose these values for embedding dimensions based on 
their widespread use in related work [23,48–51]. We did not consider 
configurations with different sizes for different perspectives in order to 
always provide the same a-priori importance to all perspectives and leave 
the fusion module to properly assess and combine their contribution. 
We report the results achieved using both the proposed strategies to 
handle class imbalance (see Section 3.2), namely, class weighting and
focal loss. For the latter, we used the values suggested in the original 
paper [47] for its hyperparameters, i.e., 𝛾 = 2.0 and 𝛼 = 0.25.

To specifically evaluate the contribution provided by each perspec-
tive (content - C, relationships - R, and spatial information - S), we also 
measured the performance considering different combinations thereof. 
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Table 3
Results obtained by IMMENSE (with focal loss). The best result in terms of F1 is shown in bold. 
 IMMENSE: 𝑘𝑐 = 𝑘𝑟 = 𝑘𝑠 = 128

 Configuration All users Safe Risky

 C R S Prec Rec F1 Acc Prec Rec F1 Prec Rec F1

 ✓ 0.965 0.925 0.944 0.990 0.990 1.000 0.995 0.940 0.850 0.893 
 ✓a 0.775 0.950 0.834 0.940 1.000 0.940 0.969 0.550 0.960 0.699 
 ✓ 0.835 0.930 0.875 0.960 0.990 0.970 0.980 0.680 0.890 0.771 
 ✓a 0.820 0.945 0.870 0.960 0.990 0.960 0.975 0.650 0.930 0.765 
 ✓ 0.895 0.920 0.907 0.980 0.990 0.980 0.985 0.800 0.860 0.829 
 ✓a 0.895 0.920 0.907 0.980 0.990 0.980 0.985 0.800 0.860 0.829 
 ✓ ✓ 0.965 0.950 0.955 0.990 0.990 1.000 0.990 0.940 0.900 0.920 
 ✓ ✓ 0.960 0.940 0.947 0.990 0.990 1.000 0.990 0.930 0.880 0.904 
 ✓ ✓ 0.910 0.930 0.920 0.980 0.990 0.990 0.990 0.830 0.870 0.850 
 ✓ ✓ ✓ 0.980 0.850 0.900 0.980 0.980 1.000 0.990 0.980 0.700 0.810 
 IMMENSE: 𝑘𝑐 = 𝑘𝑟 = 𝑘𝑠 = 256

 Configuration All users Safe Risky

 C R S Prec Rec F1 Acc Prec Rec F1 Prec Rec F1

 ✓ 0.965 0.940 0.952 0.990 0.990 1.000 0.995 0.940 0.880 0.909 
 ✓a 0.940 0.900 0.919 0.980 0.990 0.990 0.990 0.890 0.810 0.848 
 ✓ 0.820 0.905 0.856 0.960 0.990 0.970 0.980 0.650 0.840 0.733 
 ✓a 0.815 0.910 0.855 0.960 0.990 0.970 0.980 0.640 0.850 0.730 
 ✓ 0.870 0.895 0.882 0.970 0.990 0.980 0.985 0.750 0.810 0.779 
 ✓a 0.870 0.880 0.875 0.970 0.980 0.980 0.980 0.760 0.780 0.770 
 ✓ ✓ 0.960 0.955 0.957 0.990 0.990 1.000 0.995 0.930 0.910 0.920 
 ✓ ✓ 0.875 0.965 0.914 0.970 1.000 0.980 0.990 0.750 0.950 0.838 
 ✓ ✓ 0.865 0.915 0.888 0.970 0.990 0.980 0.985 0.740 0.850 0.791 
 ✓ ✓ ✓ 0.965 0.955 0.960 0.990 0.990 1.000 0.995 0.940 0.910 0.925 
 IMMENSE: 𝑘𝑐 = 𝑘𝑟 = 𝑘𝑠 = 512

 Configuration All users Safe Risky

 C R S Prec Rec F1 Acc Prec Rec F1 Prec Rec F1

 ✓ 0.970 0.945 0.957 0.990 0.990 1.000 0.995 0.950 0.890 0.919 
 ✓a 0.850 0.975 0.901 0.970 1.000 0.970 0.985 0.700 0.980 0.817 
 ✓ 0.780 0.935 0.837 0.950 0.990 0.950 0.970 0.570 0.920 0.704 
 ✓a 0.755 0.940 0.812 0.930 1.000 0.930 0.964 0.510 0.950 0.660 
 ✓ 0.845 0.905 0.870 0.960 0.990 0.970 0.980 0.700 0.840 0.760 
 ✓a 0.810 0.930 0.857 0.960 0.990 0.960 0.975 0.630 0.900 0.740 
 ✓ ✓ 0.905 0.960 0.930 0.980 1.000 0.980 0.990 0.810 0.940 0.870 
 ✓ ✓ 0.970 0.955 0.962 0.990 0.990 1.000 0.995 0.950 0.910 0.930 
 ✓ ✓ 0.835 0.925 0.875 0.960 0.990 0.970 0.980 0.680 0.880 0.770 
 ✓ ✓ ✓ 0.970 0.965 0.967 0.990 0.990 1.000 0.995 0.950 0.930 0.940 
a For IMMENSE configurations represents the adoption of its C, R, and S modules without the fusion module.
We also performed comparative experiments considering each single 
module implemented in IMMENSE.

The results obtained by IMMENSE were compared with those
achieved by the following state-of-the-art systems, namely:

• Mr-SBC [39], that represents the dataset as database tables and 
adopts a probabilistic approach for the node classification task.

• Re3py [38], an approach based on ensembles of relational deci-
sion trees. Its peculiarity is the ability to construct new features 
dynamically by navigating foreign key paths and employing an 
iterative feature aggregation strategy.

• Heterogeneous Graph Transformer (HGT) [24], where, as suggested 
by the authors, node features are extracted from the content us-
ing the pre-trained XLNet language model [52], which identifies 
embeddings of dimension 768.

• Rio-GNN [26], adopting the same procedure followed by the 
authors: Rio-GNN is used for computing node embeddings and 
the classification is done by an MLP. We set the features initially 
associated with nodes to the same features used for IMMENSE, 
and its parameter 𝑛_𝑒𝑚𝑏 (dimension of the node embeddings to 
learn) to the same value as the initial feature vector.

• SAIRUS [1], a transductive framework for user classification in 
social networks, able to consider the posted textual content, user 
relationships, and users’ spatial closeness.
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It is worth noting that both Mr-SBC and Re3py represent user content 
through a bag-of-words approach, but represent relationships differ-
ently: Mr-SBC uses foreign key constraints, while Re3py relies on 
first-order predicates. Unlike our method, these two approaches do not 
exploit embeddings to capture the semantics of the content. HGT and 
Rio-GNN, on the other hand, adopt an embedding-based approach for 
representing the nodes in the network. For both HGT and Rio-GNN, we 
applied the same weighting schema used by IMMENSE (see Eq.  (3)) to 
their respective loss functions, to account for class imbalance.

It is important to note that SAIRUS, being transductive, requires 
access to the complete network of relationships and geographical infor-
mation during training, and cannot provide predictions for new users, 
who have not been observed in those networks, without an additional 
training phase on the network of relationships and on that representing 
the geographical information. IMMENSE, on the other hand, enables 
generalization to completely new networks in the prediction phase. 
This aspect makes the comparison inherently unfair in favor of SAIRUS, 
since it is aware of the users in the testing set during the training, 
while IMMENSE is purposely made unaware of them. However, such 
a comparison allows us to assess the performance of IMMENSE in such 
a more challenging scenario, compared with its closest transductive 
competitor.

All the experiments were performed on a workstation equipped with 
a NVIDIA GeForce Titan X GPU, an Intel Xeon E5-1650-v3 CPU, and 
64 GB of RAM. As evaluation measures, we consider precision, recall, 
accuracy, and F1-score, computed both on the entire set of users and 
for each class separately.
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Table 4
Results obtained by inductive competitors. The best result in terms of F1 is shown in bold. 
 MrSBC
 Configuration All users Safe Risky

 C R S Prec Rec F1 Acc Prec Rec F1 Prec Rec F1

 ✓ 0.465 0.500 0.482 0.930 0.930 1.000 0.964 0.000 0.000 0.000 
 ✓ ✓ 0.465 0.500 0.482 0.930 0.930 1.000 0.964 0.000 0.000 0.000 
 ✓ ✓ 0.465 0.500 0.482 0.930 0.930 1.000 0.964 0.000 0.000 0.000 
 ✓ ✓ ✓ 0.465 0.500 0.482 0.930 0.930 1.000 0.964 0.000 0.000 0.000 
 Re3py
 Configuration All users Safe Risky

 C R S Prec Rec F1 Acc Prec Rec F1 Prec Rec F1

 ✓ 0.465 0.500 0.482 0.930 0.930 1.000 0.964 0.000 0.000 0.000 
 ✓ ✓ 0.465 0.500 0.482 0.930 0.930 1.000 0.964 0.000 0.000 0.000 
 ✓ ✓ 0.465 0.500 0.482 0.930 0.930 1.000 0.964 0.000 0.000 0.000 
 ✓ ✓ ✓ 0.465 0.500 0.482 0.930 0.930 1.000 0.964 0.000 0.000 0.000

 HGT
 Configuration All users Safe Risky

 Prec Rec F1 Acc Prec Rec F1 Prec Rec F1

 – 0.680 0.580 0.610 0.930 0.940 0.980 0.960 0.420 0.180 0.252 
 RIO-GNN
 Configuration All users Safe Risky

 Prec Rec F1 Acc Prec Rec F1 Prec Rec F1

 𝑛_𝑒𝑚𝑏 = 128 0.535 0.515 0.447 0.510 0.500 0.860 0.632 0.570 0.170 0.262 
 𝑛_𝑒𝑚𝑏 = 256 0.790 0.775 0.773 0.780 0.720 0.880 0.792 0.860 0.670 0.753 
 𝑛_𝑒𝑚𝑏 = 512 0.630 0.605 0.594 0.610 0.670 0.410 0.509 0.590 0.800 0.679 
4.3. Results and discussion

In Tables  2 and 3, we show the results obtained by IMMENSE with 
the class weighting and the focal loss strategies, respectively, while in 
Table  4 we show the results of all its inductive competitors. The results 
refer to multiple configurations, considering the content (C), the social 
relationships (R), the spatial closeness (S), and combinations thereof, 
when made possible by each considered approach. The symbola for 
IMMENSE configurations represents the adoption of its C, R, and S 
modules without the final fusion module. Looking at the results, it is 
immediately noticeable that competitors fail to achieve satisfactory re-
sults across all evaluated configurations. Specifically, MrSBC and Re3py
exhibit a strong bias towards the safe class, classifying all users as safe in 
all the considered configurations (see the recall equal to 0 for the risky
class). Both competitors clearly suffer from data unbalancing issues, 
being not able to provide a good trade-off in the predictive performance 
over both classes. A further motivation behind poor performances of 
these competitors may be their bag-of-words representation for the 
content, that can be considered suboptimal as it fails to capture the 
semantics.

On the other hand, HGT  manages to correctly identify some risky
users (recall on the risky class equal to 0.18), but it still tends to classify 
most of users as safe. Therefore, its performance still appears affected 
by class imbalance, despite the adoption of a weighted loss function 
during the training.

Rio-GNN provides more useful predictions. The best results are 
achieved with 𝑛_𝑒𝑚𝑏 = 256 (average F1 equal to 0.773), but they still 
remain below those obtained by our method IMMENSE. We believe that 
such performances exhibited by Rio-GNN depend on the fact that the 
content is taken into account exclusively through the initial features 
associated with the nodes in the network, without a dedicated module 
for the analysis of the semantics of the content. On the contrary, IM-
MENSE has a dedicated component for each perspective (i.e., content, 
relations and spatial closeness).

Focusing on IMMENSE (see Tables  2 and 3), it is clear that the ob-
tained results are far better than those achieved by all the competitors. 
In general, IMMENSE achieves the best results when all the three per-
spectives are considered,  although in a few cases, some configurations 
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considering two perspectives yield the same macro results. However, 
the results obtained for the 𝑟𝑖𝑠𝑘𝑦 class (that is the most interesting 
class for our task) reveal that taking all perspectives into account 
leads to the best performance with all the configurations, when class 
weighting is adopted, and with an embedding dimensionality of 256 or 
512, when focal loss is adopted. We can also notice that considering 
one single perspective, either directly (see the configuration with thea
or going through the final fusion step, generally provides suboptimal 
performances. Moreover, considering the content always appears to be 
fundamental for accurate predictions, even if clearly complemented by 
the perspectives modeling social relationships and spatial proximity 
among users. Notably, the F1 performances increase in 5 out of 6 cases 
when complementing the information provided by the posted content 
with that of the spatial dimension. This is particularly interesting, 
considering that the spatial information is available for a very limited 
number of users (see Table  1). This result also outlines the ability of 
IMMENSE of properly managing possible sparsity issues in the available 
data.

It can also be noticed that IMMENSE provides balanced perfor-
mances over the risky and safe classes. These results highlight the 
capability of IMMENSE of properly exploiting multiple, complemen-
tary, perspectives as well as handling class imbalance, which is typical 
in the considered context.

As expected, increasing the embedding dimensionality tends to 
improve performance. However, the results obtained with embedding 
sizes of 128 and 256 are still highly competitive, significantly outper-
forming all baselines across all configurations.

In Table  5, we separately show the results obtained by SAIRUS, 
which can be considered the closest competitor to IMMENSE. We 
remind that such results are achieved in a transductive setting, and are, 
in principle, not comparable with those achieved by IMMENSE in the 
inductive setting, since SAIRUS is made aware of users for which it 
will need to provide a label during the prediction phase. Despite this 
inherent advantage provided to SAIRUS, in Table  6 we can see that 
IMMENSE outperforms SAIRUS in almost all the cases. In particular, 
it reaches an improvement of 9.41% in terms of F1 on all users and 
of 20.83% on risky users, with a dimensionality of 512, when class 
weighting is adopted, and an improvement of 14.12% in terms of F1 
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Fig. 3. Graphical representation through t-SNE of the IMMENSE (with focal loss) embeddings for each perspective and for the input of the fusion module (MLP). 
Orange data points correspond to risky users, while blue data points correspond to safe users. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)
Table 5
Results obtained by the transductive competitor SAIRUS.
 SAIRUS
 Configuration All users Safe Risky

 Prec Rec F1 Acc Prec Rec F1 Prec Rec F1

 𝑘𝑐 = 𝑘𝑟 = 𝑘𝑠 = 128 0.850 0.960 0.900 0.970 1.000 0.970 0.980 0.710 0.940 0.810 
 𝑘𝑐 = 𝑘𝑟 = 𝑘𝑠 = 256 0.870 0.910 0.890 0.970 0.990 0.980 0.980 0.750 0.850 0.800 
 𝑘𝑐 = 𝑘𝑟 = 𝑘𝑠 = 512 0.970 0.780 0.850 0.970 0.970 1.000 0.980 0.970 0.570 0.720 
on all users and of 30.54% on risky users, with a dimensionality of 
512, when focal loss is adopted. This gain comes with no additional 
computational costs for IMMENSE. Actually, it exhibits up to 76.93% 
improvement in terms of running times during the prediction phase (see 
the last column of Table  6) since it does not need to re-train the node 
embedding models on the graph used for the inference phase. Table 
7 provides additional details on both training and inference running 
times. As it can be noticed, IMMENSE is more efficient then SAIRUS 
for both phases, and exhibits very low running times for the inference 
phase (at most 12.4 s for a testing network of ∼7500 users), making it 
practically adoptable in real-world scenarios.

All these results prove the capability of IMMENSE in providing 
accurate predictions for this specific task in social networks, properly 
10 
exploiting the complementary information conveyed by three different 
perspectives. The specific comparison with SAIRUS also emphasized 
its ability not only to outperform it from a mere viewpoint of the 
accuracy of the predictions, but also in terms of sustainability, due to 
the significant reduction of the inference time achieved through the 
proposed inductive approach.

We finally performed a specific analysis to assess the contribution 
of each perspective in discriminating between risky and safe users. 
Specifically, in Fig.  3 we report several t-SNE plots [53] depicting the 
2D projection of the embeddings identified by the modules devoted to 
the analysis of the posted content (C), of social relationships (R), and 
of spatial information (S). We also report the 2D projection of the 7-
dimensional feature space that represents the input of the final fusion 
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Fig. 4. Graphical representation through LIME of the importance of each input feature of the fusion module (MLP) of IMMENSE (with focal loss), for 2 selected
safe users. User #0 is correctly classified by IMMENSE as safe, while user #1325 is wrongly classified by IMMENSE as risky . (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)
Table 6
Improvements of IMMENSE over SAIRUS. The improvement in terms of running times (running time reduction) refers to the 
inference phase. 
 IMMENSE (with class weighting) vs. SAIRUS
 Configuration All users Safe Risky  
 Prec Rec F1 Acc Prec Rec F1 Prec Rec F1 Time  
 𝑘𝑐 = 𝑘𝑟 = 𝑘𝑠 = 128 2.94% 1.56% 1.99% 1.03% 0.00% 1.03% 1.01% 5.63% 3.19% 4.44% 75.66% 
 𝑘𝑐 = 𝑘𝑟 = 𝑘𝑠 = 256 1.15% 7.14% 3.49% 1.03% 1.01% 0.00% 1.01% 1.33% 14.12% 6.53% 73.43% 
 𝑘𝑐 = 𝑘𝑟 = 𝑘𝑠 = 512 −8.25% 25.64% 9.41% 1.03% 3.09% −2.00% 1.01% −19.59% 71.93% 20.83% 75.93% 
 IMMENSE (with focal loss) vs. SAIRUS
 Configuration All users Safe Risky  
 Prec Rec F1 Acc Prec Rec F1 Prec Rec F1 Time  
 𝑘𝑐 = 𝑘𝑟 = 𝑘𝑠 = 128 15.29% −11.46% 0.00% 1.03% −2.00% 3.09% 1.02% 38.03% −25.53% 0.00% 71.36% 
 𝑘𝑐 = 𝑘𝑟 = 𝑘𝑠 = 256 11.49% 4.40% 7.87% 2.06% 0.00% 2.04% 1.53% 25.33% 7.06% 15.59% 76.70% 
 𝑘𝑐 = 𝑘𝑟 = 𝑘𝑠 = 512 0.00% 23.08% 14.12% 2.06% 2.06% 0.00% 1.53% −2.06% 63.16% 30.54% 76.93% 
Table 7
Training and inference times of IMMENSE and SAIRUS for the whole set of users in the training and testing 
sets, respectively. Note that SAIRUS requires to partially re-train the model during the inference because of its 
transductive nature.
 Configuration Training time (s) Inference time (s)
 SAIRUS IMMENSE IMMENSE SAIRUS IMMENSE IMMENSE  
 (class weighting) (focal loss) (class weighting) (focal loss) 
 𝑘𝑐 = 𝑘𝑟 = 𝑘𝑠 = 128 486.3 357.2 416.3 46.4 10.4 11.2  
 𝑘𝑐 = 𝑘𝑟 = 𝑘𝑠 = 256 612.5 395.8 454.8 46.4 11.2 12.4  
 𝑘𝑐 = 𝑘𝑟 = 𝑘𝑠 = 512 874.0 536.4 597.3 51.3 11.3 12.4  
s
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odule based on the MLP. For the sake of compactness, we only report 
he plots obtained when the focal loss is adopted. From the Figure, we 
an observe that each perspective alone already provides some useful 
nformation for separating risky and safe users. However, the MLP input 
xhibits a very neat separation between the two classes, with only 
 features. These visual results confirm that the three perspectives, 
ubsequently properly combined by the MLP, provide complementary 
nformation to the fusion module to better discriminate between risky
nd safe users, thus confirming our initial intuition behind IMMENSE.
Furthermore, we also selected two safe users and two risky users, 

nd plotted their corresponding LIME importance scores [54] in Figs. 
and 5. In particular, Fig.  4 shows the LIME plots for one safe user 
User #0) correctly classified by IMMENSE and one of the few safe
sers (User #1325) wrongly classified by IMMENSE as risky. As we can 
s

11 
ee, for User #0, especially with embedding size 512, the consistency 
with the true class) of the meta-features (input features of the MLP) 
enoted by the green bar counterbalances the mistakes of other meta-
eatures, with the reconstruction error of the safe autoencoder being 
he most contributing feature for a correct classification. For User 
1325, we see that the error in the classification is mainly due to all 
erspectives. A clear imperfect classification based on the content is not 
ounterbalanced by the other perspectives, which, instead, reinforce 
he error. We note that this example was selected on purpose, and 
his behavior is not commonly observed in other examples, as F1 and 
ccuracy scores confirm.
Fig.  5 highlights additional noteworthy cases involving risky users. 

otably, for User #24, the correct classification into the risky class is 
trongly supported by almost all meta-features. Only two of them show 
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Fig. 5.  Graphical representation through LIME of the importance of each input feature of the fusion module (MLP) of IMMENSE (with focal loss), for 2 selected
risky users. User #24 is correctly classified by IMMENSE as risky, while user #689 is wrongly classified by IMMENSE as safe.
a very weak inclination towards classifying the user as safe. Instead, for 
User #689 a strong mistake due to the reconstruction error of the safe
autoencoder, which appears lower than that of the risky autoencoder, 
is not counterbalanced by other meta-features, leading to a wrong 
classification. Again, this example was deliberately selected to illustrate 
such behavior, which is not commonly observed across the dataset.

5. Conclusions

In this paper we presented IMMENSE, an inductive learning method 
for the identification of risky users in social networks. IMMENSE can 
effectively classify unseen nodes by leveraging three perspectives: the 
semantics of the content posted by users, their social relationships, and 
their spatial closeness.

Our evaluation on a real-world dataset demonstrated that IMMENSE 
is able to outperform four state-of-the-art inductive competitors, which 
struggle with network sparsity and data imbalance. IMMENSE also 
proved to outperform its closest competitor SAIRUS, even if the latter 
was run in a more advantageous setting (i.e., transductive), where 
nodes in the testing set are known in advance during the training phase. 
Such improvements were clear both in terms of predictive accuracy 
and in terms of prediction time. These results suggest that IMMENSE 
can effectively be used in real-world environments by Law Enforcement 
Agencies to counter negative phenomena in social networks.

For future work, we plan to enhance IMMENSE by incorporating 
temporal analysis, which would allow tracking changes in user behav-
iors over time. This aspect could support the detection of users with 
a safe history who suddenly begin posting negative content or joining 
risky communities.
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