
Knowledge-Based Systems 319 (2025) 113544

A
0
n

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Positional trace encoding for next activity prediction in event logs
Antonio Pellicani a,b ,∗, Michelangelo Ceci a,b,c
a Dept. of Computer Science, University of Bari, Via Orabona, 4, 70125 Bari, Italy
b Data Science Lab, National Interuniversity Consortium for Informatics (CINI), Via Volturno, 58, 00185 Roma, Italy
c Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

A R T I C L E I N F O

Keywords:
Process mining
Next activity prediction
Positional encoding

 A B S T R A C T

The analysis of log data, generated by running processes in many application domains, enables organizations to
identify opportunities for operational improvements. For instance, in healthcare, analyzing patient treatment
logs can optimize care pathways; in manufacturing, production line logs can reveal bottlenecks; and in customer
service, ticket resolution logs can streamline response protocols. One key analytical task is predicting the
next activity in a process, which supports operational decision-making through better resource allocation and
proactive response to customer needs. In this paper, we solve the next activity prediction task by exploiting
a novel positional encoding approach that is based on sliding windows. This approach allows us to consider
both a way to adapt to changes in the data distribution, and exploit positional information of the activities
in the traces. The method proposed in this paper, called OREO, takes into account these aspects through a
positional encoding tightly coupled with specific types of deep neural network architectures. The results on
eight real-world process logs show the superiority of the models exploiting OREO encoding over state-of-the-art
approaches, confirming our initial intuition of benefits gained by combining a time-window based model with
positional information.
1. Introduction

Nowadays, more and more companies are becoming aware of the
benefits of analyzing their internal process data to optimize their
procedural processes. As a consequence, they continuously collect data
in the form of event logs through information systems [1]. A log may
contain a variety of processes, for instance: a user who is withdrawing
cash from an ATM, a call center operator answering a call and solving a
problem raised by a customer, or a user browsing the Internet. For each
of these processes, the specific activities performed are tracked. The aim
is to exploit the saved data in a meaningful way and shape the processes
themselves [2]. In this context process mining has emerged as a research
area between business process management and data mining, attracting
attention from research and practice.

Process mining includes three main activities, namely: Process Dis-
covery, Conformance Checking, and Process Enhancement. Following
an unsupervised approach, Process Discovery aims to mimic the process
model by analyzing the given event log. The idea behind this task is to
generalize the log data to create a model that can explain and simulate
the executed processes. On the other hand, Conformance Checking is
performed in a supervised setting. Here the inputs are an already known
process model (the reference process model) and the observed event
log. The goal is to identify discrepancies between the analyzed model

∗ Corresponding author at: Dept. of Computer Science, University of Bari, Via Orabona, 4, 70125 Bari, Italy.
E-mail addresses: antonio.pellicani@uniba.it (A. Pellicani), michelangelo.ceci@uniba.it (M. Ceci).

and the underlying event log. Finally, Process Enhancement tries to
improve an existing process model using information about the actual
processes recorded in an event log.

In addition to the aforementioned activities, Operational Support
is becoming increasingly important, due to its ability to automati-
cally make decisions while the processes are running, in an online
fashion. Thus, given a partial trace representing the current process
execution, it automatically detects deviations (Detect), predicts the
remaining processing time for the running activity (Predict) or recom-
mends the resource to be allocated, in order to complete an activity
(Recommend) [3]. Researchers are paying particular attention to the
prediction tasks (a.k.a. Predictive Process Monitoring — PPM), like the
prediction of the following activity to be executed, which may assist
in resolving long-standing problems such as the allocation of human
resources or the decision on the specific actions to take [4]. Neverthe-
less, Predictive Process Monitoring is not limited only to those tasks;
indeed, it aims to precisely forecast a process performance measure in
the future. Fig. 1 shows a graphical representation of a PPM task. We
can distinguish two fundamental moments in the task: the prediction
moment and the predicted moment. The prediction moment is the
instant in the present time when we decide to make a prediction. The
predicted moment refers to the subject of the prediction. A prediction
https://doi.org/10.1016/j.knosys.2025.113544
Received 22 October 2024; Received in revised form 25 March 2025; Accepted 9 A
vailable online 25 April 2025
950-7051/© 2025 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).
pril 2025

icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/knosys
https://www.elsevier.com/locate/knosys
https://orcid.org/0000-0002-4193-3486
https://orcid.org/0000-0002-6690-7583
mailto:antonio.pellicani@uniba.it
mailto:michelangelo.ceci@uniba.it
https://doi.org/10.1016/j.knosys.2025.113544
https://doi.org/10.1016/j.knosys.2025.113544
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Pellicani and M. Ceci Knowledge-Based Systems 319 (2025) 113544
Fig. 1. Predictive process monitoring task pipeline.
is thus dependent on the predictor’s memory, which is derived from the
knowledge of the process execution history up to the prediction point.

In order to properly take into account the execution history of the
process to which the prediction should apply, the predictor’s memory
should be properly represented. This representation should, in addition,
be coherent with the representation used in the learning phase, in order
to make the predictor actionable. In this perspective, raw traces cannot
be exploited to directly train PPM models since they need a preliminary
encoding phase that is able to encapsulate the predictor’s memory.
This encoding should be able to (i) transform the trace into a feature-
vector representation, which can be directly used by common machine
learning algorithms, and (ii) extract hidden but precious information
about the activities in the trace, including temporal patterns. The trace
encoding method, typically used in the literature to deal with the se-
quence of activities inside a trace, is the one hot encoding. It is usually
applied on increasing sequences of activity called prefix traces [5,6].
However, the obtained feature vectors may fail to capture temporal
patterns, which may exist between activities inside a trace or among
traces [5,7]. These kinds of patterns are essential since they model the
temporal sequence, according to which activities are performed, and
cannot be ignored when training models that should be able to consider
how activities influence the execution of a running trace.

This paper proposes OREO (pOsitional tRace EncOding), a novel
positional-based trace encoding method capable of grasping local tem-
poral patterns inside a partial trace, by exploiting a sliding window
model. The use of sliding windows, typically adopted in stream data
mining, limits the analysis to the last significant activities, allowing
OREO to properly represent only the full sliding window and possible
local temporal patterns it should contain. Thus, OREO overcomes the
limitation of simple prefix trace encoding methods, creating a robust
representation that intrinsically selects the most relevant features that
could be effectively exploited to train a predictive model for a running
process and for considering the control-flow perspective. More specif-
ically, we adopt a positional encoding so it is possible to represent
which activity took place in which position of the trace, but only
focusing on the sliding window. It is well-known that trace encoding
is a critical step in process mining. Usually trace encoding approaches
consider multiple perspectives (i.e. control flow, elapsed time, allocated
resources) and summarize them in a single significant representation,
creating a new feature space [8]. Thus, choosing the correct views to
include in an encoding could significantly influence the successfulness
of the process mining task, boosting the performance of the trained
models and avoiding the creation of complex separation boundaries,
which could prevent the correct classification of traces and activities [9,
10]. Moreover, it is well recognized that the time window model is very
robust to capture the concept drift phenomenon, according to which the
data distribution may change over time [11]. This aspect, translated
in process mining, means that in a trace the next activities are more
related to the most recent activities than activities carried out in the
more distant past.

The main contributions of this paper are therefore the following:

• We present a detailed state-of-the-art analysis of the trace encod-
ing methods and next activity prediction challenge;
2
• We propose a novel positional trace encoding method;
• We employ the trace encoding method for next activity predic-
tion, using five different deep learning models;

• We provide an extensive empirical evaluation of our method,
including a thorough comparison with several state-of-the-art
methods.

The rest of the paper is structured as follows: Section 2 summarizes
the state of the art related to the next activity prediction, focusing
on the chosen representation for the traces. Section 3 introduces the
preliminary notions to examine the problem. Then Section 4 describes
the proposed method, while Section 5 illustrates the experimental
setup and the obtained results. Finally, in Section 6 we draw some
conclusions and define some future goals.

2. Background and motivation

Predictive Process Monitoring (PPM) has emerged as a crucial tech-
nology in both academic research and industry applications, demon-
strating significant impact across various business domains [12–14].
Its economic implications are substantial, with documented benefits in
operational efficiency, cost reduction, and competitive advantage [15].
Indeed, monitoring business processes and predicting their future be-
havior can allow managers to behave proactively before events oc-
cur [16].

Among the various PPM tasks, this paper focuses on next activity
prediction, which aims to predict the next activity to be executed in
a running process. This is one of the most researched classification
tasks in PPM [17], with several important use cases: (1) Resource
allocation, in which resources have to be distributed in advance based
on anticipated future activities [18]; (2) Best action recommendation,
in which based on the critical performance metrics that the business
wants to maximize, the next best actions have to be identified [19]; 3)
Early warning, that monitors the next most probable activity to detect
wastes, threats, errors, or difficulties in advance [20]; 4) Anomaly
detection, in which abnormal process instances are detected by looking
at the probability distribution of the next activity predictions [21].

However, PPM encompasses a broader range of predictive tasks. In-
deed, classification approaches can also address risk prediction [22,23],
agreement violation prediction [24,25], and outcome prediction [26,
27]. Furthermore, PPM techniques can target continuous domains
through regression-based approaches [17]. For example, in [28], the
authors use and expand existing process mining approaches to provide
a framework to analyze and forecast manufacturing costs. Several
regression-based approaches aim to predict the time taken to complete
a case, which is essential when dealing with service level agreement
constraints [29–31]. In [32] the remaining time prediction for running
cases is generated after a transition system is created and annotated.
Similarly, Polato et al. [33] exploit both the control flow perspective
and the data flow perspective to improve the prediction quality. These
authors use the event log to create a transition system, which they
subsequently annotate using Na"ive Bayes and Support Vector Regression
models. These models are exploited to forecast the remaining time from

A. Pellicani and M. Ceci Knowledge-Based Systems 319 (2025) 113544
the next state and the probability of transition from one state to the
next, respectively. Ceci et al. [34] rely on sequence trees for predicting
the completion time. This approach naturally exploits the control-flow
perspective and intrinsically allows the clustering of traces showing
similar activities. Then a regressor, useful to predict the remaining time,
is trained for each node in the built sequence trees. Other examples of
work aiming to predict the remaining cycle time of a process instance
can be seen in [5,35–37].

Another crucial aspect for PPM algorithms is how to represent traces
(sequences of activities) in a format suitable for machine learning
algorithms. A trace encoding strategy must be able to capture both the
sequential nature of the process and the relationships between activi-
ties, while transforming categorical activity information into numerical
features that can be processed by predictive models [38]. In the liter-
ature, several methods for encoding traces are available, ranging from
classic one-hot encoding [5] to word embeddings [39], representational
learning [40], and encoding approaches that take into account specific
trace information, such as the experience of the resource performing an
activity [41].

Apart from the classical offline scenario, where a model is trained
on historical batches of logs that usually capture the complete course
of cases, PPM (and in general, process mining) algorithms have also
been applied in the online scenario, where a stream of events is
analyzed [42]. In this context, models can be retrained from scratch
or fine-tuned as new instances from the stream are acquired and
analyzed [43]. However, this online setting introduces specific chal-
lenges, most notably the presence of concept drift, where the statistical
properties of the target variable change over time in unexpected ways.
This phenomenon can affect the performance of predictive models, as
the patterns learned from historical data can become less relevant or
entirely obsolete to make predictions on current cases [44]. An example
of handling these challenges is the work of Pasquadibisceglie et al. [45],
which takes advantage of the fine-tuning of deep learning models along
with adaptive windowing mechanisms to detect and handle concept
drifts in a stream of events.

Given the main focus of this paper on the next activity prediction
task, we now review the main approaches proposed in the literature to
address this task.

2.1. Next activity prediction

In the literature, multiple approaches have been proposed to solve
this complex but practical PPM task, ranging from traditional meth-
ods to neural network-based solutions. Among traditional approaches,
automata and state-based models have played a foundational role.
Breuker et al. [46] introduced RegPFA, a predictive model based
on grammatical inference theory and Probabilistic Finite Automatons
(PFA). When tested on the BPI2012 and BPI2013 datasets, RegPFA
achieved accuracies between 60%–80%. Following a similar approach,
Becker et al. [47] also leveraged PFA, developing a model where states
are determined by their previous state and the occurred events. Le
et al. [48] extended this line of research using Hidden Markov Models,
proposing a Hybrid Markov Model that combines higher-order Markov
Models with sequence alignment to match unseen traces with similar
known sequences.

Another stream of research focuses on tree-based approaches. Lak-
shmanan et al. [49] used decision trees to predict next events based
on context data from semi-structured business processes, while Rozinat
et al. [50] applied them to trace-level features. Taking a different
perspective on tree structures, Ceci et al. [51] combined pattern mining
with nested model learning, arranging prediction models in a tree
structure for frequent activity sequences. Their framework remains
algorithm-agnostic, allowing the use of any classification method. In a
subsequent work, Ceci et al. [52] extended their research to parallel
activities through Parallact, a distributed framework using density-
based clustering and multi-target classification. Departing from these
3
approaches, Ferilli et al. [53] explored declarative process mining,
using first-order logic reasoning for next activity prediction.

The aforementioned approaches exhibit three significant limitations
in their methodological frameworks. First, they do not incorporate
temporal window modeling, thus failing to account for the differential
impact of recent versus historical activities on subsequent process
behavior. Second, these approaches generally lack proper implementa-
tion of positional encoding mechanisms. This limitation is particularly
notable as positional encoding enables the representation of total or-
dering of actions within a trace, capturing the precise sequence of
activities, rather than merely representing partial ordering (that is,
precedes/follows relationships) or the binary presence or absence of
activities. Third, these methods typically do not account for the tempo-
ral dimension encoded in activity timestamps, despite its demonstrated
significance in process behavior prediction [54].

Following their remarkable success in various predictive tasks across
different domains, neural networks have emerged as a predominant
methodology in next activity prediction, becoming one of the most
widely used approaches [55]. Among neural architectures, Recurrent
Neural Networks (RNNs), and particularly Long Short-Term Memory
(LSTM) networks, have been widely adopted due to their natural ability
to process sequential data and capture temporal dependencies [56,57].
One of the pioneering works in this direction was proposed by Tax
et al. [5], who developed a three-layer LSTM architecture predicting
both next activities and their timing. Their model used one-hot encod-
ing with additional temporal features, though this encoding approach
showed limitations with increasing numbers of activities [54]. Sub-
sequently, Evermann et al. [58] enhanced LSTM-based prediction by
introducing an embedding layer, similar to word embeddings, which
mapped each input to an n-dimensional vector and incorporated ad-
ditional event attributes. Building on this, Lin et al. [59] proposed
MM-Pred, an encoder–decoder architecture using LSTM for direct at-
tribute transformation. However, both approaches overlooked temporal
windows and treated all activities equally regardless of their timeline
position. Addressing these limitations, Camargo et al. [54], advanced
LSTM application by incorporating timestamps and pre-trained em-
beddings combining activity and resource encoding. Pasquadibisceglie
et al. [60] further developed this direction through multi-view learning,
using separate embedding layers for different categorical attributes
before concatenation with non-categorical features.

Recent LSTM applications have addressed the inherent black-box
nature of these models by incorporating interpretable methods. No-
tably, Wickramanayake et al. [61] proposed two different types of
attention mechanisms coupled with a classical LSTM model, demon-
strating that high accuracy can be achieved while maintaining model
interpretability.

Beyond LSTM architectures, Mehdiyev et al. [62] introduced a
sophisticated embedding strategy encompassing multiple process per-
spectives. Their approach combines n-gram representation with feature
hashing across various event attributes, utilizing a deep-stacked au-
toencoder for hierarchical feature representation before final prediction
through a feedforward neural network.

A parallel line of research explored Convolutional Neural Networks
(CNNs). Pasquadibisceglie et al. [63] exploited accumulated one-hot
encodings obtained from the executed activities, along with the number
of days that have passed from the current event and the first event in a
process instance, to generate artificial two-channel images. A multi-level
CNN then analyzes these images and generates the predictions. Their
subsequent work [64] arranged features linearly in RGB images, while
Di Mauro et al. [65] combined embedding layers with stacked CNN
inception modules.

Finally, several other deep neural architectures have been success-
fully applied to next activity prediction, including Generative Adver-
sarial Networks (GANs) [66], transformers [67], and Graph Neural
Networks (GNNs) [68].

A. Pellicani and M. Ceci Knowledge-Based Systems 319 (2025) 113544
Table 1
Example of two traces taken from the event log BPI 2017 Offer. (See Section 5.2 for details of this event
log).
 Trace Event CaseID Activity Timestamp
 1 𝑒1 Offer_247135719 Create Offer 2016/01/02 10:17:05
 𝑒2 Offer_247135719 Created 2016/01/02 10:17:08
 𝑒3 Offer_247135719 Sent (online only) 2016/01/02 10:19:21
 𝑒4 Offer_247135719 Cancelled 2016/01/02 10:21:26
 2 𝑒5 Offer_1365106765 Create Offer 2016/01/02 10:55:46
 𝑒6 Offer_1365106765 Created 2016/01/02 10:55:47
 𝑒7 Offer_1365106765 Sent (mail and online) 2016/01/02 10:59:50
 𝑒8 Offer_1365106765 Returned 2016/01/08 11:00:24
 𝑒9 Offer_1365106765 Accepted 2016/01/11 10:42:07
Fig. 2. The steps of OREO encoding.
Despite incorporating temporal information, these methods fail to
fully capture the dynamic nature of process execution, as they do
not exploit the time-window approach. This approach overcomes the
fundamental limitations of simple prefix trace encoding by intelli-
gently identifying and leveraging the most relevant features for predic-
tion in running processes. Moreover, as detailed in Section 4, OREO
provides an additional key advantage: its encoding strategy is com-
pletely architecture-agnostic, enabling seamless integration with var-
ious neural networks including CNNs, LSTMs, and transformer-based
models.

3. Preliminary notions

In this section we adapt the definitions provided by van der Aalst [2]
for Predictive Process Monitoring to formally define the next activity
prediction problem.

Given the set of activities and the set of case identifiers we
define the concept of event, trace and event log.

Definition 1 (Event). An event 𝑒𝑖 = (𝑎𝑖, 𝑐𝑖, 𝑡𝑖) ∈ is a triple, where
𝑎 ∈ , 𝑐 ∈ , 𝑡 is the timestamp and is the set of all possible events.
𝑖 𝑖 𝑖

4
Therefore, given the event 𝑒𝑖, it is possible to define three utility
functions: 𝜋(𝑒𝑖) = 𝑎𝑖, 𝜋 (𝑒𝑖) = 𝑐𝑖, and 𝜋 (𝑒𝑖) = 𝑡𝑖, which return the
activity, the case identifier and the timestamp associated to an event,
respectively.

Definition 2 (Trace). A trace is the finite sequence of events 𝜎 =
⟨𝑒1, 𝑒2,… , 𝑒𝑛⟩, having 𝑒𝑖 ∈ , 𝜋 (𝑒𝑖) ≤ 𝜋 (𝑒𝑖+1) and 𝜋 (𝑒𝑖) = 𝜋 (𝑒𝑖+1)
for 1 ≤ 𝑖 ≤ 𝑛 − 1.

A trace is therefore the abstraction of a completed process, where
we can identify a total ordering among the composing events. More-
over, we can further abstract the previously defined utility functions to
work on traces. Thus, given a trace 𝜎𝑖 composed of 𝑛 events, 𝜋(𝜎𝑖) =
⟨𝑎𝑖1,… , 𝑎𝑖𝑛⟩ and 𝜋 (𝜎𝑖) = ⟨𝑡𝑖1,… , 𝑡𝑖𝑛⟩ are the functions returning se-
quences of activities and timestamps related to the trace 𝜎𝑖. Finally,
a collection of traces defines an event log.

Definition 3 (Event Log). An event log = (𝜎1,… , 𝜎
||) is a set of traces,

where ∀ (𝜎𝑖, 𝜎𝑗) ∈ , 𝑖 ≠ 𝑗. We have that 𝜎𝑖 ∩ 𝜎𝑗 = ∅.

An example of an event log taken from the BPI 2017 Offer Dataset
can be found in Table 1. This paper aims to extract valuable knowledge
from event logs, in order to perform the next activity prediction task,
defined as:

A. Pellicani and M. Ceci Knowledge-Based Systems 319 (2025) 113544
Table 2
Example of traces from BPI 2017 Offer log after the
sequence set extraction phase using a sliding window
of size 𝑘 = 3.

∗ =

𝜎1 1 →
⟨𝑒1 , 𝑒2 , 𝑒3⟩

 ⟨𝑒2 , 𝑒3 , 𝑒4⟩

𝜎2 2 →

⟨𝑒5 , 𝑒6 , 𝑒7⟩
 ⟨𝑒6 , 𝑒7 , 𝑒8⟩
 ⟨𝑒7 , 𝑒8 , 𝑒9⟩

Definition 4 (Next Activity). Given a time instant 𝑡 and a (partial)
trace 𝜎 of length 𝑘, that is 𝜎 = (𝑒1,… , 𝑒𝑘), the next activity of 𝜎 is
𝜋(𝑛𝑒𝑥𝑡(𝜎)) = 𝑒𝑘+1.

4. Method

In the following subsections we describe the event log represen-
tation, which leads to the proposed encoding method. Then we give
some insights into the deep neural network models that we use for the
encoded logs and to solve the next activity prediction task.

4.1. Data representation

The event logs that indicate the execution of activities in a business
process are the starting point for predictive process monitoring. As
stated in Section 3, events from the same process can be chronologi-
cally (totally) ordered into traces, allowing us to analyze the process
execution while it is still running. However, current machine learning
and deep learning state-of-the-art techniques cannot directly grasp
useful information from the raw traces, like that obtained by directly
considering the activity position in the trace or the relation among
the execution times of the single activities. Thus, encoding techniques
able to extract feature vectors from traces are needed before training a
predictive process monitoring model [69].

Formally, a trace encoder is a function 𝑓 ∶ → 1 × ⋯ × 𝑟 that
maps any (complete/partial) trace 𝜎 to an 𝑟-dimensional feature vector
1 × ⋯ × 𝑟, with 𝑖 ⊆ R, 1 ≤ 𝑖 ≤ 𝑟. A variety of viewpoints could
be synthesized by the 𝑟 extracted features. For example, traditional
encoding usually relies on the control-flow perspective, focusing on the
activities performed during the trace execution and their order. Other
encodings further analyze the categorical and numerical attributes that
come with a trace, i.e., deepening the time perspective or the resource
perspective [9].

On the contrary, this work proposes a representation that focuses on
the time and control-flow perspective, creating a positional encoding
that could be exploited in many predictive process monitoring tasks
(not only for next activity prediction). To obtain the encoding function,
three phases are performed in OREO: (i) sequence set extraction, (ii)
sequence set transformation, (iii) tensor encoding.

Fig. 2 provides an abstract representation of the three phases and
their operations, while Algorithm 43 presents the corresponding pseu-
docode. Each phase transforms the original log, encoding the temporal
and sequential relationships among the activities in the traces.

In particular, in the sequence set extraction phase, each trace 𝜎𝑖 from
the log is analyzed to generate a sequence set 𝑖. This set contains
the sequences of events obtained by applying a sliding window of
dimension 𝑘 to the original trace.

𝑖 = {⟨𝑒𝑖𝑗 ,… , 𝑒𝑖𝑗+𝑘−1⟩ ∣ 0 < 𝑗 ≤ |𝜎𝑖| − 𝑘 + 1, 0 ≤ 𝑖 < ||}, (1)

where 𝑒𝑖𝑗 is the 𝑗th event belonging to the 𝑖th trace in the event log. Note
that the number of sequences in each set 𝑖 depends on the length of
the original trace 𝜎𝑖: a trace of length 𝑛 will generate 𝑛−𝑘+1 sequences.
Each of these sequences can be seen as a partial traces. Hence, all the
utility functions defined in Section 3 can be applied. In addition, we
5
Algorithm 1: OREO Encoding
Input: Event log , window size 𝑘
Output: Encoded log 𝐿
/* Phase 1: Sequence Set Extraction */

1 ∗ ← ∅;
2 foreach trace 𝜎𝑖 ∈ do
3 𝑖 ← ∅;
4 for 𝑗 ← 1 to |𝜎𝑖| − 𝑘 + 1 do
5 sequence ← ⟨𝑒𝑖𝑗 , ..., 𝑒

𝑖
𝑗+𝑘−1⟩;

6 𝑖 ← 𝑖 ∪ {sequence};
7 end
8 ∗ ← ∗ ∪ 𝑖;
9 end
/* Phase 2: Sequence Set Transformation */

10 ∗
𝐴 ← ∅;

11 𝐴 ← get_unique_activities();
12 foreach ∈ ∗ do
13 𝐴 ← 𝜋();
14 ∗

𝐴 ← ∗
𝐴 ∪ {𝐴};

15 end
16 ← zeros(𝑘, |𝐴|, |∗

𝐴|);
17 for 𝑖 ← 1 to |∗

𝐴| do
18 𝑀𝐴

← zeros(𝑘, |𝐴|);
19 𝐴 ← ∗

𝐴[𝑖];
20 for 𝑝 ← 1 to 𝑘 do
21 𝑀𝐴

[𝑝] ← one_hot_encode(𝐴[𝑝], 𝐴);
22 end
23 [∶, ∶, 𝑖] ← 𝑀𝐴

;
24 end

/* Phase 3: Tensor Encoding */
25 𝐿 ← zeros(|∗

𝐴|, |𝐿𝑝| + 𝑘);
/* Set positional features (first |𝐿𝑝| columns) */

26 𝑐𝑜𝑙 ← 1;
27 for 𝑤𝑝 ← 1 to 𝑘 do
28 foreach 𝑎𝑗 ∈ 𝐴 do
29 for 𝑖 ← 1 to |∗

𝐴| do
30 𝐿[𝑖, 𝑐𝑜𝑙] ← (𝑤𝑝 ,𝑎𝑗 ,𝑖);
31 end
32 𝑐𝑜𝑙 ← 𝑐𝑜𝑙 + 1;
33 end
34 end

/* Set temporal features (last k columns) */
35 for 𝑖 ← 1 to |∗

𝐴| do
36 for 𝑤𝑝 ← 1 to 𝑘 do
37 𝜎𝑜𝑟𝑖𝑔 ← get_original_trace(∗

𝐴[𝑖]);
38 𝑡𝑠𝑡𝑎𝑟𝑡 ← get_first_activity_time(𝜎𝑜𝑟𝑖𝑔);
39 𝑡𝑐𝑢𝑟𝑟 ← get_activity_time_at_position(𝜎𝑜𝑟𝑖𝑔 , 𝑤𝑝);
40 𝐿[𝑖, |𝐿𝑝| +𝑤𝑝] ← 𝑡𝑐𝑢𝑟𝑟 − 𝑡𝑠𝑡𝑎𝑟𝑡;
41 end
42 end
43 return 𝐿

can define the superset ∗, containing all the sequence sets extracted
from the event log .

∗ =
||
⋃

𝑖=1
𝑖 (2)

In this phase, the choice of the sliding window dimension 𝑘 determines
the algorithm’s forgetting level. Indeed, a low value of 𝑘 will emphasize
recently executed events, forgetting the older ones. Otherwise, a higher
𝑘 value will allow the algorithm to reason on far-in-time events, with-
out considering a possible concept drift in the log. Table 2 shows an
example of sequence set extraction starting from the partial log shown
in Table 1 (in the example we use a sliding window of size 𝑘 = 3). In the
example ∗ contains five sequences, two of which have been extracted

A. Pellicani and M. Ceci Knowledge-Based Systems 319 (2025) 113544
Fig. 3. An example of LSTM cell.
from 1 (containing events from 𝜎1), while the other three come from
2 (with the events extracted from 𝜎2). This difference in the number
of sequences is due to the lengths of the traces: 𝜎1 has length 4, thus
generating |1| = |𝜎1| − 𝑘 + 1 = 4 − 3 + 1 = 2 sequences, while 𝜎2 has
length 5, resulting in |2| = |𝜎2| − 𝑘 + 1 = 5 − 3 + 1 = 3 sequences.
It is noteworthy that the term forgetting level does not mean that old
activities in the trace are discarded and not used in the training phase:
they are still used but the models cannot use them as direct descriptive
properties for the next activity prediction task.

The second phase, sequence set transformation, aims to transform the
superset ∗ into a three-dimensional tensor. Thanks to this tensor, the
partial traces extracted in the first phase are aligned based on their
position in the window. Consequently, inter-trace relationships among
the activities could be captured and exploited during the learning
phase.

In order to build the tensor, several steps have to be performed.
First, the executed activities are extracted for each sequence in ∗,
exploiting the utility function 𝜋 and generating a new superset ∗

𝐴.

∗
𝐴 = {𝜋() ∣ ∀ ∈ ∗} (3)

Then each activity sequence 𝐴 ⊆ ∗
𝐴 is further processed by creating

a matrix 𝑀𝑆𝐴
∈ N𝑘×|𝐴|, where 𝑘 is the sliding window dimension,

𝐴 is the set of distinct activities in the event log and |𝐴| is the
cardinality of this set. Each row of the 𝑀𝑆𝐴

 matrix will contain the
one-hot encoding of each activity in 𝐴. Finally, the three-dimensional
OREO tensor ∈ N𝑘×|𝐴|×|∗

𝐴| is obtained by combining all the matrices
created from the activity sequences in ∗

𝐴.
 now contains information on all partial traces, each aligned on

the basis of its position in the sliding window. However, since the con-
struction of includes transformation steps such as one-hot encoding,
the tensor is very likely to be sparse, which can cause hampering of the
learning effectiveness.

In the third phase, we perform tensor encoding to create a represen-
tation that reduces data sparsity, captures both positional and temporal
patterns, and enables effective model learning. We define our feature
set 𝐿 as the union of positional features 𝐿𝑝 and temporal features 𝐿𝑇 :

𝐿 = 𝐿𝑝 ∪ 𝐿𝑇 , (4)

The positional features 𝐿𝑝 capture the occurrence of activities at
specific positions within the sliding window:

𝐿𝑝 = {𝑝
⟨𝑤𝑝 ,𝑎𝑗 ⟩

∣ 𝑤𝑝 ≤ 𝑘 ∧ 𝑎𝑗 ∈ 𝐴 ∧ ∃𝑖 = (1,… , |∗
𝐴|) ∶ (𝑤𝑝 ,𝑎𝑗 ,𝑖) = 1}

(5)

where 𝑝
⟨𝑤𝑝 ,𝑎𝑗 ⟩

 is a positional binary feature that, intuitively, represents
the fact that activity 𝑎 is executed at position 𝑤 in a sliding window
𝑗 𝑝

6
of a trace (sequence). More specifically, each positional feature 𝑝
⟨𝑤𝑝 ,𝑎𝑗 ⟩

is characterized by two indices: 𝑤𝑝 representing the specific position
within the sliding window (ranging from 1 to window size k), and 𝑎𝑗
representing a specific activity from the set of possible activities A. For
example, feature 𝑝

⟨2,𝑎5⟩
 would indicate whether activity 𝑎5 appears in

position 2 of the sliding window.
To complement the positional information, we introduce temporal

features 𝐿𝑇 , which capture the timing aspects of activities:
𝐿𝑇 = 𝑇

⟨𝑎𝑗 ⟩
∣ 𝑎𝑗 ∈ 𝐴, (6)

where 𝑇
⟨𝑎𝑗 ⟩

 represents the normalized time distance between the start
of the trace and the moment activity 𝑎𝑗 is executed.

The final encoding creates a matrix with |𝑆∗
𝐴| rows and |𝐿𝑝| + 𝑘

columns, where each row 𝑥𝑖 represents a sliding window of a trace.
The values in this matrix are determined as follows:

𝑥𝑖,𝑙 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if 𝑙 ≤ |𝐿𝑝|, 𝑙 = 𝑝
⟨𝑤𝑝 ,𝑎𝑗 ⟩

𝑎𝑛𝑑 (𝑤𝑝 ,𝑗,𝑖) = 1

0, if 𝑙 ≤ |𝐿𝑝|, 𝑙 = 𝑝
⟨𝑤𝑝 ,𝑎𝑗 ⟩

𝑎𝑛𝑑 (𝑤𝑝 ,𝑗,𝑖) = 0

𝑡𝑖,𝑎𝑗 , if |𝐿𝑝| < 𝑙 ≤ |𝐿𝑝| + 𝑘, 𝑙 = 𝑇
⟨𝑎𝑗 ⟩

(7)

where 𝑡𝑖,𝑎𝑗 represents the time distance between the start of the trace
and the execution of activity 𝑎𝑗 .

4.2. The OREO models

To demonstrate the versatility and effectiveness of our encoding,
we evaluate it across multiple predictive architectures, which are di-
rectly inspired from existing state-of-the-art next activity prediction
approaches. This allows us to directly evaluate the effectiveness of
our encoding, when compared with such methods. Specifically: (i)
OREO-LSTM builds upon the predictive architecture proposed by [60],
incorporating their LSTM architecture; (ii) OREO-Image adopts the pre-
dictive architecture proposed by [63]; (iii) OREO-Inception adopts the
predictive architecture proposed by [65]; and (iv) OREO-Transformer
adopts the predictive architecture proposed by [67]. The goal is to learn
a function 𝑓 which given an encoded partial trace 𝜎𝑒𝑛𝑐 at time 𝑡 returns
the next activity 𝑎𝑡+1 to be executed in that trace, more formally:

𝑓 (𝜎𝑒𝑛𝑐) → 𝑎𝑡+1 (8)

As its name suggests, the OREO-LSTM model is based on the well-
known Long Short-Term Memory (LSTM) [70], a particular Recurrent
Neural Network (RNN) capable of grasping strong temporal dependences
when dealing with sequence data. Unlike classical Multi-Layer Per-
ceptrons, where a layer is fully connected to the next without any
cycle, LSTMs allow feedback loops to share parameters across the
model and maintain a memory. Our model exploits two LSTM layers

A. Pellicani and M. Ceci Knowledge-Based Systems 319 (2025) 113544
entangled by two Batch Normalization layers to settle the learning
process. The number of hidden units (LSTM cells) in the two LSTM layers
is an adequately optimized hyperparameter (see Section 5.1 for further
details). Basically, an LSTM cell incorporates three types of gates: input
gate, forget gate and output gate, and can be described by the following
equations:

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑
(

𝑊𝑓𝑥𝑡 + 𝑉𝑓ℎ𝑡−1 + 𝑏𝑓
)

, (9)

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑
(

𝑊𝑖𝑥𝑡 + 𝑉𝑖ℎ𝑡−1 + 𝑏𝑖
)

, (10)

𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡 × 𝑡𝑎𝑛ℎ
(

𝑊𝑐𝑥𝑡 + 𝑉𝑐ℎ𝑡−1 + 𝑏𝑐
)

, (11)

𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑
(

𝑊𝑜𝑥𝑡 + 𝑉𝑜ℎ𝑡−1 + 𝑏𝑜
)

, (12)

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ
(

𝐶𝑡
)

, (13)

where 𝑥𝑡 and ℎ𝑡 are the input and the hidden state at time step t,
while 𝑊 , 𝑉 , and 𝑏 are trainable network parameters representing the
weight matrices and the biases. The forget gate is described in Eq. (9).
Specifically, the forget gate exploits the sigmoid function to combine
the information from the previous hidden state and the current input,
obtaining a value between 0 and 1. The closer this score is to 0, the less
knowledge of the earlier steps is kept. Then the input gate (Eq. (10))
takes into account both the current input and the earlier hidden states,
exploiting a sigmoid function. In this case, the output score between
0 and 1 indicates the importance of the new information held by the
input. At this point the network has sufficient information to calculate
the new cell state (Eq. (11)), weighting the last state by the forget score
and adding a scaled input value. Subsequently, the new hidden state ℎ𝑡
(Eq. (13)) is calculated by multiplying the output gate score (Eq. (12))
with the current cell state 𝐶𝑡, solely after applying the tanh activation
function. Fig. 3 shows an example of LSTM cell, with all the interactions
among the gates highlighted. In OREO-LSTM two LSTM layers are
used (coherently with [5]), followed by a dense layer to compute the
probabilities of each predictable class, i.e., the next activities which
could be executed. Specifically, our dense layer exploits the softmax
activation function to predict a class 𝑦𝑖:

𝑦𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
exp(𝑧𝑖)

∑

||
𝑗=1 exp(𝑧𝑗)

, (14)

where 𝑧𝑖 and 𝑧𝑗 are the values assumed by the 𝑖th and the 𝑗th output
neuron in the final dense layer, respectively. The architecture of the
OREO-LSTM model is shown in Fig. 4

Contrary to OREO-LSTM, OREO-Inception and OREO-Image cores
are based on the Convolutional Neural Network architecture [71], a
popular family of DNNs commonly used in computer vision, speech
recognition [72] and time series analysis [73], which are specialized in
processing data with a grid-like topology. Nevertheless, Convolutional
Neural Networks have also proved their potentiality in the process
mining field, showing stimulating results when employed for predicting
the next activity that will be executed in a running trace [64,65] or the
trace outcome [74]. The building block of a CNN is the convolutional
layer, which comprises a group of filters having their own set of
parameters that must be learned. The dimensions of the filters are
smaller than those of the input. Each filter is convolved with the
input to produce an activation map of neurons. Usually convolutional
layers are coupled with pooling layers to reduce the output dimensions,
while preserving the most critical information. This makes the network
robust to slight differences in pattern positions in the input data, as
happens in image processing tasks. Our CNN architectures rely on
the global max pool operation, which provides the best results in the
literature [75], combined with a dense layer. This dense layer is in
charge of performing the classification through the softmax activation
function (see Eq. (14)).

Nonetheless, traditional deep convolutional networks may suffer
from overfitting and high computational costs. Attempts to reduce these
problems rely on sparsely connected architectures. Moreover, classic
hardware is better suited for the computation of dense matrices, making
7
Fig. 4. The OREO-LSTM model and its components.

it necessary to approximate the sparse structure of the networks. For
the design of the architecture of OREO-Inception, we consider the
well-known naïve inception module. Developed by Google for its state-
of-the-art CNN-classifier GoogleNet [76], the inception module creates
wider neural networks instead of deeper ones, to avoid overfitting and
decrease the computational cost. This result is achieved by combining
one max pooling layer with three parallel convolution layers, having
distinct filter sizes that simultaneously apply to the same input. Then
a concatenation layer is used to juxtapose the outputs of all the former
layers. OREO-Inception stacks two inception modules before perform-
ing a global max pooling. As usual, a final dense layer outputs the
prediction. The architecture of the OREO-Inception model is shown in
Fig. 5a.

On the other hand, OREO-Image is still based on classical CNNs,
but relies on a 2D Convolution. Thus, an additional transformation
phase is required to convert the encoded traces into an image-like
matrix. This can easily be achieved by applying some well-established
trace-to-image conversion techniques [64,74]. In particular, we use the
DeepInsight method [77], which projects each encoded feature into
a Cartesian plan, by applying a non-linear dimensionality reduction
technique. The convex hull algorithm is then used to find the smallest
rectangle containing all the features which define the transformed

A. Pellicani and M. Ceci Knowledge-Based Systems 319 (2025) 113544
Fig. 5. The CNN-based OREO models and their components. (a) OREO-Inception. (b) OREO-Image.
Fig. 6. An example of a bitmap obtained by applying DeepInsight to an OREO-encoded
sequence, taken from the BPI Challenge 2020 — Request for Payment event log.

image’s border. Finally, each row of the encoded log is converted into
an image (bitmap) by assigning feature values to the corresponding
features’ Cartesian coordinates. Fig. 6 shows an example of a bitmap
obtained by applying this technique when the t-SNE dimensionality
reduction is used to generate the feature coordinates. To the best of
the authors’ knowledge, this is the first time the DeepInsight encoding
has been applied to the next activity prediction task, allowing the use of
2d-CNNs, which are well known for their capability of extract complex
patterns and relationships from image data. The OREO-Image neural
network architecture is shown in Fig. 5b.

While CNN architectures have proven effective in capturing spa-
tial patterns in the encoded traces, recent advancements in sequence
modeling have highlighted the potential of attention-based mecha-
nisms for process mining tasks [78]. The OREO-Transformer model
leverages the Transformer architecture [79], which has revolutionized
8
natural language processing and sequence modeling tasks by introduc-
ing a mechanism that can effectively capture long-range dependencies
in sequential data without recurring connections. Unlike LSTM and
CNN-based approaches, Transformers rely entirely on the self-attention
mechanism to model relationships between elements in a sequence.
This mechanism allows the model to weigh the importance of different
positions in the input sequence when computing a representation for
each position, enabling parallel processing and better handling of long-
term dependencies. The core component of our OREO-Transformer is
the encoder block, which consists of a multi-head self-attention layer
followed by a position-wise feed-forward network. The multi-head
attention mechanism splits the input into multiple attention heads,
allowing the model to jointly attend to information from different
representation subspaces at different positions. Each head computes
attention scores using scaled dot-product attention, where the input
sequence is transformed into queries, keys, and values through learned
linear projections. Position encoding is added to the input embeddings
to provide the model with information about the relative or absolute
position of the events in the sequence, which is crucial since the Trans-
former architecture is inherently permutation-invariant. The model’s
architecture concludes with a dense layer using softmax activation
for predicting the next activity. This approach has shown promising
results in process mining tasks, as it can effectively capture both local
and global patterns in event sequences while being computationally
efficient due to its parallel nature [67]. The OREO-Transformer neural
network architecture is shown in Fig. 7a.

While the Transformer architecture demonstrates the power of
pure attention-based approaches, we further investigated how atten-
tion mechanisms could enhance traditional sequential models. The
last model we developed, OREO-SelfAttention combines LSTM and
self-attention mechanisms, leveraging both the temporal modeling

A. Pellicani and M. Ceci Knowledge-Based Systems 319 (2025) 113544
Fig. 7. The attention-based OREO models and their components. (a) OREO-Transformer. (b) OREO-SelfAttention.
Table 3
Optimized hyperparameters.
 Network Parameters Value

OREO-LSTM

Batch Size {128, 256, 512}
 Learning Rate [0.0001, 0.01]
 LSTM Unit Size {50, 100, 150, 200}
 OREO-Inception Batch Size {128, 256, 512}
 Learning Rate [0.0001, 0.01]

OREO-Image

Batch Size {128, 256, 512}
 Learning Rate [0.0001, 0.01]
 Number of Filters {32, 64}
 Kernel Size {2 × 2, 4 × 4}
 Pool Size {2 × 2, 4 × 4}

OREO-Transformer

Batch Size {128, 256, 512}
 Learning Rate [0.0001, 0.01]
 Number of Attention Heads {4, 8, 16}
 Number of Transformer Blocks {2, 4, 8}

OREO-SelfAttention

Batch Size {128, 256, 512}
 Learning Rate [0.0001, 0.01]
 LSTM Unit Size {50, 100, 150, 200}
 Number of Attention Heads {4, 8, 16}

capabilities of recurrent networks and the flexible focus provided by
attention. Through a multi-head self-attention layer applied to the
LSTM representations, the model can identify and weigh relevant
events in the sequence regardless of their position. The combination
of LSTM-generated representations and attention-weighted features
is achieved through residual connections and normalization layers,
ensuring effective information flow during training. This hybrid archi-
tecture provides insights into how attention mechanisms can enhance
9
Table 4
Quantitative characteristics of the analyzed event logs.
 Event Log Traces Events Activities
 BPI12Complete 13 087 164506 23
 BPI12 W 9658 170107 19
 BPI12WComplete 9658 72413 6
 Receipt 1434 8577 27
 BPI13Incident 7554 65533 13
 BPI13Problem 1841 9011 7
 BPI17Offer 42 995 193849 8
 BPI20Request 6886 36796 19

sequential models for next activity prediction in business processes. The
OREO-SelfAttention neural network architecture is shown in Fig. 7b.

5. Experiments

In the following subsections, we first describe the implementa-
tion and optimization details of OREO. Subsequently, we describe the
datasets (event logs) considered in the evaluation of the performance
achieved by the five OREO models. Then we outline the experimental
setting that aims to answer the following research questions: RQ1)
How does the sliding window dimension 𝑘 affect the accuracy of the
predictive model?, and RQ2) How do our models compare with recent
state-of-the-art deep learning approaches? Finally, we show and discuss
the obtained results.

5.1. Models implementation and optimization

OREO has been implemented in Python 3.8.8, using TensorFlow
2.4.1 as the neural network backend. The hyperparameter optimization

A. Pellicani and M. Ceci Knowledge-Based Systems 319 (2025) 113544
Table 5
Summary of evaluated competitor methods.
 Approach Data preprocessing Archi-

tecture
Perspectives
used

Strengths Limitations

 [5] One-hot encoding
with temporal
features

LSTM Activities,
Time

Clear
interpretability;
Straightforward
implementation

Performance
decreases with
increasing number
of activities

 [54] Pre-trained
embedding network

LSTM Activities,
Time,
Resources

Rich feature
representation;
Effective resource
integration

Complex
pre-training phase
required

 [58] Embedding layer for
activity encoding

LSTM Activities,
Resources

Efficient
representation of
categorical data

Omits temporal
aspects

 [60] Multi-view encoding LSTM All available
features

Comprehensive
feature utilization

Increased
computational
demands

 [61] Sequence encoding LSTM
with
shared
atten-
tion

Activities,
Time,
Resources

Weighs importance
of past activities

Requires significant
computational
resources

 [63] Image-like
transformation of
sequences

CNN Activities,
Time

Excels at pattern
recognition

Fixed input size
requirement

 [64] RGB image
encoding

CNN Activities,
Time,
Resources

Multi-dimensional
feature
representation

May struggle with
long-term
dependencies

 [67] Sequence encoding Trans-
former

Activities,
Time

Models complex
sequential
dependencies

Highest
computational
requirements

Table 6
Results on the benchmark datasets with the OREO-LSTM model.
 k Accuracy Precision Recall Fscore

BPI12Complete

2 0.766 ± 0.003 0.692 ± 0.027 0.627 ± 0.001 0.636 ± 0.003
 3 0.806 ± 0.008 0.700 ± 0.015 0.640 ± 0.004 0.665 ± 0.007
 4 0.837 ± 0.007 0.688 ± 0.020 0.638 ± 0.006 0.651 ± 0.009

BPI12W

2 0.900 ± 0.000 0.775 ± 0.014 0.723 ± 0.009 0.723 ± 0.006
 3 0.906 ± 0.000 0.776 ± 0.012 0.725 ± 0.013 0.749 ± 0.012
 4 0.905 ± 0.002 0.753 ± 0.014 0.715 ± 0.010 0.719 ± 0.007

BPI12WComplete

2 0.811 ± 0.004 0.736 ± 0.005 0.687 ± 0.007 0.699 ± 0.005
 3 0.852 ± 0.010 0.750 ± 0.030 0.708 ± 0.017 0.728 ± 0.020
 4 0.849 ± 0.004 0.738 ± 0.024 0.707 ± 0.018 0.704 ± 0.009

Receipt

2 0.882 ± 0.011 0.560 ± 0.010 0.511 ± 0.015 0.521 ± 0.007
 3 0.918 ± 0.014 0.559 ± 0.008 0.511 ± 0.008 0.524 ± 0.009
 4 0.947 ± 0.013 0.575 ± 0.012 0.520 ± 0.017 0.533 ± 0.013

BPI13Incident

2 0.683 ± 0.005 0.459 ± 0.063 0.368 ± 0.014 0.374 ± 0.014
 3 0.739 ± 0.004 0.448 ± 0.021 0.393 ± 0.017 0.380 ± 0.016
 4 0.760 ± 0.004 0.445 ± 0.019 0.396 ± 0.030 0.390 ± 0.024

BPI13Problem

2 0.678 ± 0.004 0.462 ± 0.066 0.438 ± 0.062 0.435 ± 0.065
 3 0.748 ± 0.013 0.466 ± 0.044 0.446 ± 0.041 0.456 ± 0.043
 4 0.826 ± 0.014 0.422 ± 0.041 0.427 ± 0.037 0.422 ± 0.040

BPI17Offer

2 0.817 ± 0.002 0.553 ± 0.010 0.572 ± 0.000 0.508 ± 0.001
 3 0.839 ± 0.002 0.583 ± 0.004 0.601 ± 0.000 0.582 ± 0.001
 4 0.960 ± 0.001 0.435 ± 0.017 0.500 ± 0.000 0.462 ± 0.001

BPI20Request

2 0.917 ± 0.004 0.565 ± 0.066 0.527 ± 0.062 0.522 ± 0.065
 3 0.985 ± 0.001 0.622 ± 0.019 0.599 ± 0.003 0.608 ± 0.006
 4 0.988 ± 0.001 0.617 ± 0.008 0.594 ± 0.032 0.581 ± 0.021
phase has been conducted by exploiting the Hyperopt library [80]. For
this purpose, we used 20% of the training set as the validation set.
Table 3 reports the hyperparameters which have been tuned in the five
models. Furthermore, the training phase was stopped if there was no
improvement 0n the validation loss for 40 epochs (also known as ‘‘early
stopping’’ principle). Finally, the loss function was optimized through
the Adam Optimizer, with a maximum number of epochs set to 300.
10
5.2. Event logs

We use eight event logs extracted from five well-known benchmark
datasets, specifically: BPI12Complete, BPI12W, BPI12WComplete, Re-
ceipt, BPI13Incident, BPI13Problem, BPI17Offer and BPI20Request. Table
4 summarizes the quantitative characteristics of the considered event
logs.

A. Pellicani and M. Ceci Knowledge-Based Systems 319 (2025) 113544
Table 7
Results on the benchmark datasets with the OREO-Inception model.
 k Accuracy Precision Recall Fscore

BPI12Complete

2 0.770 ± 0.002 0.718 ± 0.009 0.623 ± 0.003 0.633 ± 0.005
 3 0.811 ± 0.002 0.728 ± 0.012 0.655 ± 0.006 0.668 ± 0.005
 4 0.842 ± 0.002 0.730 ± 0.003 0.645 ± 0.005 0.662 ± 0.006

BPI12W

2 0.889 ± 0.002 0.774 ± 0.016 0.725 ± 0.013 0.727 ± 0.012
 3 0.903 ± 0.001 0.772 ± 0.016 0.735 ± 0.006 0.753 ± 0.004
 4 0.904 ± 0.001 0.775 ± 0.017 0.713 ± 0.010 0.719 ± 0.007

BPI12WComplete

2 0.808 ± 0.004 0.730 ± 0.001 0.674 ± 0.010 0.687 ± 0.009
 3 0.830 ± 0.003 0.739 ± 0.005 0.693 ± 0.005 0.701 ± 0.007
 4 0.847 ± 0.004 0.737 ± 0.026 0.689 ± 0.028 0.689 ± 0.017

Receipt

2 0.882 ± 0.010 0.534 ± 0.033 0.485 ± 0.030 0.497 ± 0.031
 3 0.917 ± 0.013 0.539 ± 0.029 0.489 ± 0.047 0.503 ± 0.042
 4 0.946 ± 0.014 0.518 ± 0.028 0.472 ± 0.033 0.486 ± 0.030

BPI13Incident

2 0.688 ± 0.003 0.456 ± 0.033 0.378 ± 0.018 0.387 ± 0.020
 3 0.743 ± 0.005 0.442 ± 0.042 0.395 ± 0.015 0.407 ± 0.009
 4 0.758 ± 0.008 0.421 ± 0.016 0.397 ± 0.030 0.392 ± 0.026

BPI13Problem

2 0.683 ± 0.014 0.450 ± 0.076 0.431 ± 0.064 0.426 ± 0.069
 3 0.762 ± 0.014 0.476 ± 0.042 0.461 ± 0.057 0.465 ± 0.060
 4 0.832 ± 0.007 0.467 ± 0.069 0.460 ± 0.047 0.455 ± 0.051

BPI17Offer

2 0.817 ± 0.002 0.556 ± 0.013 0.572 ± 0.000 0.507 ± 0.001
 3 0.839 ± 0.002 0.596 ± 0.019 0.601 ± 0.000 0.518 ± 0.001
 4 0.960 ± 0.001 0.447 ± 0.017 0.500 ± 0.000 0.462 ± 0.001

BPI20Request

2 0.917 ± 0.014 0.573 ± 0.076 0.530 ± 0.064 0.525 ± 0.069
 3 0.985 ± 0.001 0.629 ± 0.014 0.591 ± 0.013 0.603 ± 0.015
 4 0.988 ± 0.001 0.650 ± 0.033 0.624 ± 0.078 0.612 ± 0.062
Table 8
Results on the benchmark datasets with the OREO-Image model.
 k Accuracy Precision Recall Fscore

 2 0.744 ± 0.001 0.681 ± 0.012 0.581 ± 0.001 0.589 ± 0.001
 3 0.799 ± 0.008 0.729 ± 0.015 0.636 ± 0.004 0.656 ± 0.007

BPI12Complete

4 0.845 ± 0.001 0.730 ± 0.007 0.634 ± 0.009 0.658 ± 0.006
 2 0.899 ± 0.001 0.778 ± 0.035 0.720 ± 0.010 0.717 ± 0.012
 3 0.916 ± 0.003 0.779 ± 0.010 0.721 ± 0.008 0.719 ± 0.020

BPI12W

4 0.913 ± 0.005 0.694 ± 0.084 0.651 ± 0.083 0.653 ± 0.083
 2 0.830 ± 0.003 0.768 ± 0.001 0.707 ± 0.001 0.724 ± 0.001
 3 0.860 ± 0.002 0.781 ± 0.023 0.763 ± 0.020 0.763 ± 0.021

BPI12WComplete

4 0.881 ± 0.002 0.778 ± 0.012 0.756 ± 0.014 0.747 ± 0.013
 2 0.827 ± 0.004 0.494 ± 0.040 0.473 ± 0.035 0.460 ± 0.034
 3 0.905 ± 0.011 0.569 ± 0.045 0.531 ± 0.041 0.535 ± 0.037

Receipt

4 0.947 ± 0.022 0.576 ± 0.074 0.520 ± 0.069 0.533 ± 0.069
 2 0.680 ± 0.005 0.368 ± 0.021 0.359 ± 0.015 0.354 ± 0.015
 3 0.739 ± 0.006 0.405 ± 0.014 0.363 ± 0.027 0.358 ± 0.015

BPI13Incident

4 0.758 ± 0.004 0.441 ± 0.058 0.388 ± 0.034 0.380 ± 0.029
 2 0.683 ± 0.015 0.455 ± 0.056 0.437 ± 0.054 0.434 ± 0.055
 3 0.775 ± 0.005 0.468 ± 0.066 0.457 ± 0.052 0.446 ± 0.052

BPI13Problem

4 0.847 ± 0.009 0.480 ± 0.063 0.461 ± 0.052 0.458 ± 0.052
 2 0.817 ± 0.002 0.550 ± 0.003 0.572 ± 0.000 0.506 ± 0.001
 3 0.838 ± 0.002 0.589 ± 0.003 0.601 ± 0.000 0.517 ± 0.002

BPI17Offer

4 0.960 ± 0.001 0.435 ± 0.001 0.500 ± 0.000 0.462 ± 0.001
 2 0.916 ± 0.015 0.512 ± 0.056 0.474 ± 0.054 0.463 ± 0.055
 3 0.984 ± 0.002 0.611 ± 0.021 0.554 ± 0.013 0.548 ± 0.010

BPI20Request

4 0.981 ± 0.011 0.572 ± 0.185 0.544 ± 0.174 0.541 ± 0.177
BPI12 [81] is a real-world event log that contains processes ex-
tracted from loan applications at a Dutch financial institute, collected
through an online system from 2011/10/01 to 2012/03/14. The logged
activities are grouped into three specific sub-processes, each tracking
a different state of the process i.e., state of the application – denoted
by letter A, state of work items related to the application – denoted
by letter W, and state of the offer – denoted by letter O. Starting
from BPI12, we extracted three different event logs with three different
complexity levels, to compare our method with the existing approaches.
Specifically, BPI12Complete contains all the activity completion events
from all the traces, BPI12 W contains all the activities for the subprocess
W, and BPI12WComplete contains all the activity completion events for
the subprocess W.
11
The Receipt log [82] derives from the CoSeLoG project. Within
the CoSeLoG project, the (dis)similarities between several municipality
processes in the Netherlands have been investigated. Specifically, the
dataset records logs of building permit application processes in different
anonymous municipalities.

The BPI13 [83] log collects traces recorded by Volvo IT Belgium.
The log contains events from an incident and problem management
system called VINST. The primary goal of the Handle Incidents Process
is to restore regular service operation as quickly as possible, therefore
ensuring that the best possible levels of service quality and availability
are maintained. If the action owner suspects that the incident might
reoccur, a problem record is registered in the system. Thus, the log

A. Pellicani and M. Ceci Knowledge-Based Systems 319 (2025) 113544
Table 9
Results on the benchmark datasets with the OREO-Transformer model.
 k Accuracy Precision Recall Fscore

BPI12Complete

2 0.773 ± 0.001 0.725 ± 0.006 0.612 ± 0.006 0.627 ± 0.006
 3 0.813 ± 0.001 0.730 ± 0.015 0.632 ± 0.004 0.652 ± 0.003
 4 0.847 ± 0.002 0.729 ± 0.014 0.614 ± 0.011 0.638 ± 0.010

BPI12W

2 0.891 ± 0.003 0.759 ± 0.026 0.712 ± 0.010 0.715 ± 0.004
 3 0.903 ± 0.003 0.768 ± 0.027 0.715 ± 0.004 0.716 ± 0.011
 4 0.903 ± 0.001 0.753 ± 0.015 0.704 ± 0.011 0.707 ± 0.005

BPI12WComplete

2 0.802 ± 0.003 0.712 ± 0.019 0.663 ± 0.025 0.667 ± 0.022
 3 0.840 ± 0.003 0.744 ± 0.013 0.726 ± 0.006 0.721 ± 0.013
 4 0.852 ± 0.005 0.731 ± 0.034 0.709 ± 0.026 0.697 ± 0.023

Receipt

2 0.884 ± 0.009 0.499 ± 0.035 0.472 ± 0.022 0.467 ± 0.033
 3 0.919 ± 0.011 0.523 ± 0.019 0.492 ± 0.031 0.494 ± 0.032
 4 0.942 ± 0.014 0.516 ± 0.045 0.491 ± 0.032 0.489 ± 0.041

BPI13Incident

2 0.688 ± 0.004 0.426 ± 0.015 0.372 ± 0.014 0.374 ± 0.014
 3 0.742 ± 0.005 0.398 ± 0.026 0.378 ± 0.017 0.366 ± 0.012
 4 0.761 ± 0.005 0.409 ± 0.028 0.395 ± 0.031 0.380 ± 0.027

BPI13Problem

2 0.587 ± 0.077 0.265 ± 0.045 0.309 ± 0.059 0.270 ± 0.060
 3 0.717 ± 0.090 0.344 ± 0.124 0.366 ± 0.076 0.344 ± 0.099
 4 0.846 ± 0.010 0.474 ± 0.063 0.456 ± 0.055 0.447 ± 0.059

BPI17Offer

2 0.817 ± 0.002 0.558 ± 0.001 0.572 ± 0.000 0.506 ± 0.001
 3 0.838 ± 0.002 0.599 ± 0.003 0.600 ± 0.000 0.516 ± 0.002
 4 0.960 ± 0.001 0.435 ± 0.001 0.500 ± 0.000 0.462 ± 0.001

BPI20Request

2 0.917 ± 0.003 0.523 ± 0.038 0.525 ± 0.021 0.509 ± 0.017
 3 0.984 ± 0.001 0.579 ± 0.066 0.556 ± 0.030 0.550 ± 0.034
 4 0.987 ± 0.001 0.575 ± 0.026 0.550 ± 0.036 0.545 ± 0.033
can be naturally split into two sets of traces: those related to incidents
(BPI13Incident) and those related to problems (BPI13Problem).

The BPI17Offer [84] is also a real event log containing sequences
of a loan application process at the same Dutch financial institute as
BPI12, but which started in 2016 and handled before 02-02-2017.

The BPI2020 [85] log collects data from the reimbursement process
at TU/e University in the Netherlands. In particular, we exploited the
request log, containing all the events involved in requests for payment
not related to trips, from 2017 (two departments only) to 2018 (the full
TU/e).

We choose these datasets since they come from different application
domains, with a different number of traces and events, thus they can be
effectively considered to understand if OREO encoding helps the model
to generalize well.

5.3. Experimental setting

We compared our method to eight state-of-the-art next activity
prediction frameworks ([5,54,58,60], [61], [63,64] and [67]).

Among the LSTM-based approaches, Tax et al. [5] introduced a
straightforward yet effective method using one-hot encoding combined
with temporal features. While this approach offers clear interpretability
and straightforward implementation, its performance tends to decrease
as the number of activities grows. Camargo et al. [54] addressed this
limitation by developing a more sophisticated approach that pre-trains
an embedding network to combine activity and resource informa-
tion. This results in richer feature representation, though at the cost
of a more complex pre-training phase. Evermann et al. [58] took a
different approach by implementing an embedding layer for activity
encoding, achieving efficient representation of categorical data, but
notably omitting temporal aspects in their analysis. Pasquadibisceglie
et al. [60] proposed a comprehensive multi-view learning approach
that effectively utilizes all available features, though this comes with
increased computational demands.

Moving to CNN-based approaches, [63] introduced an innovative
approach by transforming activity sequences into image-like represen-
tations. This method excels at pattern recognition but is constrained by
its fixed input size requirement. Similarly, [64] developed a method
12
using RGB image encoding, offering multi-dimensional feature repre-
sentation while potentially struggling with long-term dependencies.

The most recent developments in the field include attention-based
approaches by Wickramanayake et al. [61] and Bukhsh et al. [67].
In particular, [61] proposes an LSTM with shared attention mecha-
nism that weighs the importance of past activities, while [67] lever-
ages transformer architecture to model complex sequential dependen-
cies. Both approaches demonstrate strong capabilities in capturing
complex relationships between activities, though requiring significant
computational resources.

Beyond architectural differences, these methods also vary in their
considered log perspectives. Indeed, [5,63] and [67] base their pre-
diction on the activities and time perspectives, while [58] neglects
time and focuses only on activities and resources. The works presented
in [54], [61] and [64] try to reconcile the previous points of view
by exploiting activities, time and resource perspectives. Finally, [60]
considers all the available features to predict the next activity. Sim-
ilarly to [5,63] and [67], our work uses both the activity and time
perspectives when predicting the next activity in a trace. Table 5 pro-
vides a comprehensive comparison of these methods, highlighting their
data preprocessing approaches, model architectures, and respective
strengths and limitations.

All methods were trained using the best parameters reported in their
respective papers when available [5,54,63], through optimization when
the published code included it [60,64,67], or with default parameters
otherwise [58,61].

To systematically evaluate and compare these different approaches,
we performed a 3-fold cross-validation, training each model on two
folds and evaluating the next activity prediction using the traces of
the remaining fold. In the experiments we record the common macro
performance measures in multi-class classification, that is, Accuracy,
Precision, Recall, F-score, AUC and AUPRC.

5.4. Effect of the sliding window size

In Tables 6–10 we show the results obtained by our models OREO-
LSTM, OREO-Inception, OREO-Image, OREO-Transformer and OREO–
SelfAttention, respectively, when varying the dimension of the sliding

A. Pellicani and M. Ceci Knowledge-Based Systems 319 (2025) 113544
Table 10
Results on the benchmark datasets with the OREO-SelfAttention model.
 k Accuracy Precision Recall Fscore

BPI12Complete

2 0.767 ± 0.002 0.734 ± 0.009 0.603 ± 0.003 0.618 ± 0.005
 3 0.807 ± 0.001 0.740 ± 0.014 0.616 ± 0.008 0.641 ± 0.009
 4 0.842 ± 0.002 0.730 ± 0.012 0.620 ± 0.014 0.645 ± 0.016

BPI12W

2 0.872 ± 0.002 0.691 ± 0.018 0.664 ± 0.005 0.648 ± 0.010
 3 0.883 ± 0.003 0.697 ± 0.016 0.651 ± 0.017 0.634 ± 0.012
 4 0.890 ± 0.003 0.679 ± 0.017 0.653 ± 0.011 0.640 ± 0.016

BPI12WComplete

2 0.750 ± 0.007 0.656 ± 0.004 0.564 ± 0.014 0.581 ± 0.011
 3 0.786 ± 0.004 0.690 ± 0.025 0.655 ± 0.020 0.652 ± 0.005
 4 0.817 ± 0.009 0.701 ± 0.011 0.672 ± 0.029 0.658 ± 0.011

Receipt

2 0.882 ± 0.010 0.523 ± 0.039 0.476 ± 0.029 0.483 ± 0.030
 3 0.919 ± 0.012 0.519 ± 0.024 0.493 ± 0.027 0.497 ± 0.028
 4 0.945 ± 0.014 0.538 ± 0.023 0.511 ± 0.047 0.512 ± 0.043

BPI13Incident

2 0.689 ± 0.006 0.442 ± 0.027 0.373 ± 0.018 0.375 ± 0.019
 3 0.740 ± 0.005 0.426 ± 0.039 0.370 ± 0.023 0.359 ± 0.016
 4 0.760 ± 0.004 0.426 ± 0.017 0.385 ± 0.038 0.374 ± 0.028

BPI13Problem

2 0.687 ± 0.014 0.467 ± 0.071 0.437 ± 0.060 0.433 ± 0.063
 3 0.776 ± 0.011 0.479 ± 0.069 0.459 ± 0.052 0.451 ± 0.049
 4 0.840 ± 0.009 0.467 ± 0.041 0.456 ± 0.042 0.452 ± 0.043

BPI17Offer

2 0.817 ± 0.002 0.563 ± 0.007 0.572 ± 0.000 0.506 ± 0.001
 3 0.838 ± 0.001 0.593 ± 0.018 0.601 ± 0.000 0.516 ± 0.001
 4 0.960 ± 0.001 0.435 ± 0.001 0.500 ± 0.000 0.462 ± 0.001

BPI20Request

2 0.917 ± 0.003 0.544 ± 0.034 0.519 ± 0.023 0.506 ± 0.024
 3 0.983 ± 0.002 0.558 ± 0.014 0.552 ± 0.030 0.545 ± 0.024
 4 0.987 ± 0.001 0.595 ± 0.050 0.600 ± 0.069 0.579 ± 0.047
Table 11
Comparison of the AUC metric on the benchmark datasets for the OREO models.
 k OREO

LSTM
OREO
Inception

OREO
Image

OREO
Transformer

OREO
SelfAttention

 BPI12
Complete

2 0.808 ± 0.001 0.806 ± 0.002 0.783 ± 0.000 0.800 ± 0.003 0.795 ± 0.002
 3 0.817 ± 0.002 0.813 ± 0.003 0.802 ± 0.002 0.811 ± 0.002 0.803 ± 0.004
 4 0.815 ± 0.003 0.819 ± 0.002 0.813 ± 0.005 0.803 ± 0.006 0.806 ± 0.007

BPI12W

2 0.858 ± 0.005 0.859 ± 0.007 0.857 ± 0.005 0.853 ± 0.005 0.828 ± 0.002
 3 0.860 ± 0.006 0.860 ± 0.003 0.858 ± 0.004 0.855 ± 0.002 0.822 ± 0.009
 4 0.855 ± 0.005 0.854 ± 0.005 0.823 ± 0.042 0.849 ± 0.006 0.823 ± 0.005
 BPI12W
Complete

2 0.826 ± 0.003 0.820 ± 0.005 0.838 ± 0.001 0.813 ± 0.012 0.759 ± 0.007
 3 0.841 ± 0.009 0.827 ± 0.003 0.869 ± 0.010 0.849 ± 0.003 0.808 ± 0.010
 4 0.840 ± 0.009 0.831 ± 0.013 0.868 ± 0.007 0.841 ± 0.013 0.819 ± 0.015

Receipt

2 0.767 ± 0.005 0.750 ± 0.017 0.739 ± 0.017 0.740 ± 0.013 0.746 ± 0.020
 3 0.766 ± 0.003 0.748 ± 0.025 0.757 ± 0.025 0.754 ± 0.016 0.758 ± 0.012
 4 0.774 ± 0.010 0.748 ± 0.023 0.774 ± 0.040 0.752 ± 0.018 0.759 ± 0.029
 BPI13
Incident

2 0.670 ± 0.007 0.675 ± 0.009 0.665 ± 0.007 0.672 ± 0.007 0.672 ± 0.009
 3 0.677 ± 0.008 0.680 ± 0.007 0.670 ± 0.008 0.678 ± 0.008 0.673 ± 0.012
 4 0.687 ± 0.014 0.688 ± 0.015 0.683 ± 0.016 0.687 ± 0.015 0.682 ± 0.018
 BPI13
Problem

2 0.691 ± 0.027 0.688 ± 0.028 0.692 ± 0.023 0.615 ± 0.037 0.691 ± 0.026
 3 0.703 ± 0.017 0.706 ± 0.025 0.710 ± 0.023 0.655 ± 0.056 0.711 ± 0.023
 4 0.708 ± 0.012 0.716 ± 0.022 0.718 ± 0.024 0.715 ± 0.026 0.714 ± 0.019
 BPI17
Offer

2 0.770 ± 0.000 0.770 ± 0.000 0.770 ± 0.000 0.770 ± 0.000 0.770 ± 0.000
 3 0.782 ± 0.000 0.782 ± 0.000 0.781 ± 0.000 0.781 ± 0.000 0.781 ± 0.000
 4 0.744 ± 0.000 0.744 ± 0.000 0.744 ± 0.000 0.744 ± 0.000 0.744 ± 0.000
 BPI20
Request

2 0.761 ± 0.027 0.762 ± 0.028 0.734 ± 0.023 0.760 ± 0.010 0.756 ± 0.011
 3 0.789 ± 0.002 0.785 ± 0.006 0.776 ± 0.007 0.778 ± 0.015 0.781 ± 0.015
 4 0.819 ± 0.034 0.812 ± 0.039 0.772 ± 0.087 0.774 ± 0.018 0.799 ± 0.034
window 𝑘. We emphasize (in bold) the best result obtained for a given
evaluation measure (column of the table). In the tables, we show the
results for three different sliding window dimensions, i.e., 𝑘 ∈ {2, 3, 4}.
This set of candidate values has been selected after a preliminary test to
show the sensitivity of our encoding to the sliding window size. We do
not show the results for 𝑘 ≥ 5, since we noticed a general performance
decrease when training models on traces obtained with such a value.
Additionally, in Tables 11 and 12 we show the results obtained for the
AUC and AUPRC metrics by varying the OREO models.

We start our examination by looking at the accuracy metric (first
column). Generally, we can immediately notice that using 𝑘 = 4
our models reach the best accuracy 35 times over 40 attempts. The
13
remaining five best accuracies are reached when 𝑘 = 3. Therefore,
we should avoid smaller sliding window dimensions (i.e., 𝑘 = 2) to
maximize the accuracy. These results are expected, since small time
windows (i.e., 𝑘 ≤ 2) ignore positional encoding, while large time
windows (i.e., 𝑘 ≥ 5) are prone to overfitting.

Nonetheless, accuracy may not be the preferred metric when deal-
ing with highly unbalanced logs, showing rare activities appearing
only a few times over the entire log. Since in the performed experi-
ments, we included logs having such characteristics, namely Receipt,
BPI13Problem, BPI13Incident and BPI20Request, other measures have
to be considered, such as macro precision, macro recall and their
harmonic mean indicated by the macro f-measure. From the results on

A. Pellicani and M. Ceci Knowledge-Based Systems 319 (2025) 113544
Table 12
Comparison of the AUPRC metric on the benchmark datasets for the OREO models.
 k OREO

LSTM
OREO
Inception

OREO
Image

OREO
Transformer

OREO
SelfAttention

 BPI12
Complete

2 0.485 ± 0.005 0.487 ± 0.004 0.451 ± 0.002 0.499 ± 0.004 0.491 ± 0.005
 3 0.496 ± 0.012 0.501 ± 0.005 0.493 ± 0.012 0.512 ± 0.002 0.505 ± 0.009
 4 0.499 ± 0.012 0.514 ± 0.009 0.522 ± 0.005 0.515 ± 0.008 0.518 ± 0.009

BPI12W

2 0.634 ± 0.004 0.635 ± 0.010 0.649 ± 0.007 0.621 ± 0.005 0.578 ± 0.005
 3 0.638 ± 0.012 0.636 ± 0.005 0.645 ± 0.005 0.627 ± 0.004 0.572 ± 0.010
 4 0.622 ± 0.007 0.622 ± 0.007 0.576 ± 0.082 0.615 ± 0.009 0.568 ± 0.005
 BPI12W
Complete

2 0.559 ± 0.004 0.549 ± 0.008 0.595 ± 0.001 0.534 ± 0.016 0.445 ± 0.004
 3 0.585 ± 0.022 0.565 ± 0.003 0.629 ± 0.020 0.594 ± 0.011 0.522 ± 0.009
 4 0.587 ± 0.017 0.575 ± 0.013 0.636 ± 0.009 0.586 ± 0.018 0.542 ± 0.014

Receipt

2 0.478 ± 0.010 0.457 ± 0.033 0.412 ± 0.039 0.429 ± 0.043 0.446 ± 0.045
 3 0.481 ± 0.012 0.449 ± 0.051 0.461 ± 0.049 0.461 ± 0.046 0.466 ± 0.040
 4 0.496 ± 0.018 0.452 ± 0.049 0.496 ± 0.072 0.449 ± 0.049 0.463 ± 0.060
 BPI13
Incident

2 0.308 ± 0.013 0.315 ± 0.014 0.302 ± 0.013 0.313 ± 0.013 0.312 ± 0.016
 3 0.299 ± 0.009 0.303 ± 0.009 0.291 ± 0.009 0.298 ± 0.009 0.292 ± 0.014
 4 0.308 ± 0.017 0.310 ± 0.021 0.305 ± 0.022 0.310 ± 0.019 0.300 ± 0.026
 BPI13
Problem

2 0.332 ± 0.048 0.331 ± 0.047 0.333 ± 0.042 0.244 ± 0.046 0.335 ± 0.046
 3 0.322 ± 0.035 0.333 ± 0.043 0.339 ± 0.043 0.279 ± 0.046 0.342 ± 0.042
 4 0.320 ± 0.024 0.332 ± 0.040 0.342 ± 0.040 0.339 ± 0.041 0.333 ± 0.032
 BPI17
Offer

2 0.487 ± 0.001 0.487 ± 0.001 0.487 ± 0.001 0.487 ± 0.001 0.487 ± 0.001
 3 0.493 ± 0.001 0.493 ± 0.001 0.493 ± 0.001 0.493 ± 0.001 0.493 ± 0.001
 4 0.445 ± 0.001 0.445 ± 0.001 0.445 ± 0.001 0.445 ± 0.001 0.445 ± 0.001
 BPI20
Request

2 0.492 ± 0.048 0.494 ± 0.047 0.441 ± 0.042 0.485 ± 0.022 0.484 ± 0.023
 3 0.534 ± 0.009 0.532 ± 0.013 0.511 ± 0.009 0.516 ± 0.027 0.518 ± 0.019
 4 0.567 ± 0.043 0.564 ± 0.054 0.499 ± 0.176 0.531 ± 0.040 0.525 ± 0.045
Table 13
p-values of the signed Wilcoxon rank tests for different analyzed metrics.
 p-Value Winner
 F1 Score k = 3 vs k = 2 6.00E−09 k = 3
 k = 3 vs k = 4 0.009 k = 3
 Accuracy k = 3 vs k = 2 9.09E−13 k = 3
 k = 3 vs k = 4 0.999 k = 4
 AUC k = 3 vs k = 2 1.13E−06 k = 3
 k = 3 vs k = 4 0.804 k = 4
In bold statistically significant values (confidence=0.01).

these measures it appears that for all our models, the sliding window
dimension leading to the best F-score is generally 𝑘 = 3.

These results can also be confirmed by looking at the AUPRC and
AUC measures (Tables 11 and 12), where the models trained on a
sliding window dimension of 𝑘 = 3 are consistently ranked in the top
2 positions.

Additionally, in order to further confirm our evaluation, we per-
formed the one-tail Wilcoxon signed-rank test [86]. The null hypothesis
for this test is that the two samples are equal, so the tested approaches
are equivalent. To accept or reject the null hypothesis, a p-value is
calculated and compared with a threshold 𝛼 = 0.001. Specifically,
we compare the F-score obtained when our models are trained with
a sliding window dimension 𝑘 = 2 versus 𝑘 = 3 and 𝑘 = 3 versus
𝑘 = 4, reporting the result in Table 13. The obtained p-values generally
confirm our hypothesis, showing that the sliding window dimension
that maximizes the F-score is 𝑘 = 3.

5.5. Comparison with state-of-the-art approaches

We compared the performance of our framework against those
of eight state-of-the-art predictive process mining techniques based
on deep learning. We emphasize that four of our predictive models,
OREO-LSTM, OREO-Image, OREO-Inception, and OREO-Transformer,
adopt the same predictive architectures from existing state-of-the-art
14
next activity prediction methods, i.e., [60,63,65], and [67], respec-
tively. This approach allows us to directly evaluate how our encoding
framework enhances the performance of these existing architectures.
The results are shown in Tables 14–17, highlighting the best score
for each considered metric in bold. Regarding the OREO models, we
only provide the results obtained with 𝑘 = 3, according to the results
provided in Section 5.4.

From the results obtained by our competitor systems, we observe
that [67] always shows the best result in terms of F-score, while
[60] achieves the best accuracy for seven logs over eight. There-
fore, we consider [67] and [60] to be the leading competitors. The
remaining competitors provide very similar results, depending on the
dataset. We can also notice a general performance degradation when
unbalanced datasets (like Receipt, BPI13Problem, BPI13Incident and
BPI20Request) are considered.

Tables 14 and 15 show that OREO obtains the best performance in
term of F-Score on six out of eight tested event logs. On BPI13Inci-
dent and BPI17Offer, while OREO achieves the third-highest F-scores
behind [60,67], it does so using only activity and time perspectives,
resulting in much lighter models. Moreover, looking at the accuracy re-
sults, OREO outperforms competitors on seven logs over eight. Another
consideration comes from the results on unbalanced datasets where
there is a clear indication that the use of sliding windows can mitigate
the impact of rare classes on the overall classification. This is proba-
bly because the sliding window model, combined with the positional
encoding, is able to catch local patterns. The AUC and AUPRC results
(Tables 16 and 17) confirm the same considerations discussed before.
Indeed, for these measures, the OREO models consistently achieve the
best results for five out of eight tested datasets.

Comparing the five OREO variants, the Image-based model achieves
the highest average accuracy (∼ 0.852), followed closely by LSTM-
based and inception-based models (∼ 0.850). OREO-Transformer and
OREO-SelfAttention show marginally lower average accuracies (∼ 0.845
and ∼ 0.842 respectively). Looking at average F-scores, OREO-LSTM
shows clearer superiority with ∼ 0.587, compared to OREO-Inception (∼
0.577) and OREO-Image (∼ 0.568). Also in this case, OREO-Transformer
and OREO-SelfAttention show lower performance with ∼ 0.545 and

A. Pellicani and M. Ceci Knowledge-Based Systems 319 (2025) 113544
Table 14
Comparison between OREO models and state-of-the-art methods described in [5], [54], [58], [60], [61],
[63], [64] and [67] for BPI12Complete, BPI12 W, BPI12WComplete and Receipt datasets. The best results
are in bold.
 Approach Accuracy Precision Recall Fscore

 OREO-LSTM 0.806 ± 0.008 0.700 ± 0.015 0.640 ± 0.004 0.665 ± 0.007
 OREO-Inception 0.811 ± 0.002 0.728 ± 0.012 0.655 ± 0.006 0.668 ± 0.005
 OREO-Image 0.799 ± 0.008 0.729 ± 0.015 0.636 ± 0.004 0.656 ± 0.007
 OREO-Transformer 0.813 ± 0.001 0.730 ± 0.015 0.632 ± 0.004 0.652 ± 0.003
 OREO-SelfAttention 0.807 ± 0.001 0.740 ± 0.014 0.616 ± 0.008 0.641 ± 0.009
 [5] 0.791 ± 0.001 0.765 ± 0.011 0.628 ± 0.003 0.645 ± 0.006
 [54] 0.768 ± 0.002 0.708 ± 0.030 0.580 ± 0.002 0.578 ± 0.003
 [58] 0.720 ± 0.002 0.649 ± 0.003 0.539 ± 0.001 0.549 ± 0.000
 [60] 0.795 ± 0.003 0.780 ± 0.011 0.629 ± 0.005 0.646 ± 0.004
 [61] 0.791 ± 0.001 0.751 ± 0.012 0.631 ± 0.008 0.644 ± 0.007
 [63] 0.763 ± 0.007 0.692 ± 0.009 0.602 ± 0.008 0.612 ± 0.009
 [64] 0.789 ± 0.001 0.761 ± 0.032 0.625 ± 0.004 0.640 ± 0.005

BP
I1
2C
om

pl
et
e

[67] 0.774 ± 0.011 0.760 ± 0.015 0.652 ± 0.010 0.654 ± 0.012
 OREO-LSTM 0.906 ± 0.000 0.776 ± 0.012 0.725 ± 0.013 0.749 ± 0.012
 OREO-Inception 0.903 ± 0.001 0.772 ± 0.016 0.735 ± 0.006 0.753 ± 0.004
 OREO-Image 0.916 ± 0.003 0.779 ± 0.010 0.721 ± 0.008 0.719 ± 0.020
 OREO-Transformer 0.903 ± 0.003 0.768 ± 0.027 0.715 ± 0.004 0.716 ± 0.011
 OREO-SelfAttention 0.883 ± 0.003 0.697 ± 0.016 0.651 ± 0.017 0.634 ± 0.012
 [5] 0.881 ± 0.002 0.767 ± 0.032 0.686 ± 0.009 0.677 ± 0.011
 [54] 0.869 ± 0.020 0.628 ± 0.015 0.610 ± 0.017 0.589 ± 0.017
 [58] 0.818 ± 0.002 0.626 ± 0.040 0.602 ± 0.002 0.566 ± 0.001
 [60] 0.909 ± 0.001 0.775 ± 0.032 0.693 ± 0.015 0.693 ± 0.018
 [61] 0.905 ± 0.001 0.751 ± 0.012 0.702 ± 0.006 0.700 ± 0.008
 [63] 0.879 ± 0.006 0.697 ± 0.011 0.657 ± 0.010 0.646 ± 0.017
 [64] 0.904 ± 0.003 0.746 ± 0.012 0.684 ± 0.006 0.680 ± 0.019

BP
I1
2W

[67] 0.902 ± 0.932 0.772 ± 0.003 0.732 ± 0.003 0.708 ± 0.003
 OREO-LSTM 0.852 ± 0.010 0.750 ± 0.030 0.708 ± 0.017 0.728 ± 0.020
 OREO-Inception 0.830 ± 0.003 0.739 ± 0.005 0.693 ± 0.005 0.701 ± 0.007
 OREO-Image 0.860 ± 0.002 0.781 ± 0.023 0.763 ± 0.020 0.763 ± 0.021
 OREO-Transformer 0.840 ± 0.003 0.744 ± 0.013 0.726 ± 0.006 0.721 ± 0.013
 OREO-SelfAttention 0.786 ± 0.004 0.690 ± 0.025 0.655 ± 0.020 0.652 ± 0.005
 [5] 0.764 ± 0.001 0.737 ± 0.010 0.643 ± 0.015 0.653 ± 0.010
 [54] 0.780 ± 0.006 0.652 ± 0.037 0.594 ± 0.015 0.583 ± 0.008
 [58] 0.711 ± 0.005 0.589 ± 0.015 0.535 ± 0.003 0.528 ± 0.001
 [60] 0.842 ± 0.004 0.790 ± 0.006 0.684 ± 0.011 0.699 ± 0.009
 [61] 0.835 ± 0.004 0.771 ± 0.022 0.690 ± 0.007 0.707 ± 0.009
 [63] 0.776 ± 0.009 0.717 ± 0.005 0.603 ± 0.013 0.609 ± 0.024
 [64] 0.822 ± 0.013 0.782 ± 0.032 0.653 ± 0.018 0.679 ± 0.015

BP
I1
2W

Co
m
pl
et
e

[67] 0.848 ± 0.002 0.742 ± 0.007 0.746 ± 0.002 0.741 ± 0.004
 OREO-LSTM 0.918 ± 0.014 0.559 ± 0.008 0.511 ± 0.008 0.524 ± 0.009
 OREO-Inception 0.917 ± 0.013 0.539 ± 0.029 0.489 ± 0.047 0.503 ± 0.042
 OREO-Image 0.905 ± 0.011 0.569 ± 0.045 0.531 ± 0.041 0.535 ± 0.037
 OREO-Transformer 0.919 ± 0.011 0.523 ± 0.019 0.492 ± 0.031 0.494 ± 0.032
 OREO-SelfAttention 0.919 ± 0.012 0.519 ± 0.024 0.493 ± 0.027 0.497 ± 0.028
 [5] 0.854 ± 0.009 0.479 ± 0.034 0.482 ± 0.021 0.467 ± 0.037
 [54] 0.841 ± 0.013 0.467 ± 0.013 0.470 ± 0.006 0.460 ± 0.009
 [58] 0.812 ± 0.009 0.446 ± 0.079 0.438 ± 0.049 0.429 ± 0.062
 [60] 0.864 ± 0.013 0.523 ± 0.034 0.498 ± 0.045 0.490 ± 0.044
 [61] 0.858 ± 0.010 0.497 ± 0.047 0.497 ± 0.037 0.491 ± 0.044
 [63] 0.782 ± 0.082 0.472 ± 0.089 0.418 ± 0.095 0.424 ± 0.103
 [64] 0.848 ± 0.021 0.491 ± 0.061 0.468 ± 0.070 0.471 ± 0.065

Re
ce
ip
t

[67] 0.576 ± 0.576 0.565 ± 0.121 0.503 ± 0.122 0.521 ± 0.123
∼ 0.537 respectively. This lower performance can be attributed to their
inherent focus on learning complex long-range dependencies. In our
case, where the encoding already captures temporal patterns, these
attention mechanisms might introduce unnecessary complexity without
adding substantial benefits. Moreover, the sliding window approach we
adopted naturally limits the sequence length, making simpler architec-
tures like LSTM and CNN more effective at learning the local patterns
within these bounded contexts.

Figs. 8 and 9 provide a statistical analysis of the F-score and
accuracy results. We conducted a Friedman test to detect statistical
differences among the compared approaches, followed by a Nemenyi
post-hoc test for pair-wise performance comparisons. The final rankings
are shown in these figures. Among the five variants of OREO, LSTM
achieves the best ranking for both F-score and accuracy, although no
15
statistically significant differences emerge among the variants. For F-
score, while OREO-LSTM shows no statistical difference from [60,61],
and [67], it consistently achieves better rankings. This superiority
becomes even more evident in accuracy measurements, where all five
OREO variants consistently rank in the top positions. It is worth noting
that in both scenarios, the remaining competitors [5,54,58,61,63,64]
show no statistically significant differences among themselves.

Furthermore, Table 18 presents the average F-score and accuracy
rankings of all evaluated approaches, categorized by their underlying
architectures. The advantages of using OREO are readily apparent, as
models incorporating our proposed encoding outperform those with the
same architecture but alternative encodings in 3 out of 4 cases. The
performance improvements can be attributed to the core innovation
of OREO encoding, which emphasizes recent activities through sliding
windows to better manage process dynamics, employs total ordering to

A. Pellicani and M. Ceci Knowledge-Based Systems 319 (2025) 113544
Table 15
Comparison between OREO models and state-of-the-art methods described in [5], [54], [58], [60], [61],
[63], [64] and [67] for BPI13Incident, BPI13Problem, BPI17Offer and BPI20Request datasets. The best
results are in bold.
 Approach Accuracy Precision Recall Fscore

 OREO-LSTM 0.739 ± 0.004 0.448 ± 0.021 0.393 ± 0.017 0.380 ± 0.016
 OREO-Inception 0.743 ± 0.005 0.442 ± 0.042 0.395 ± 0.015 0.407 ± 0.009
 OREO-Image 0.739 ± 0.006 0.405 ± 0.014 0.363 ± 0.027 0.358 ± 0.015
 OREO-Transformer 0.742 ± 0.005 0.398 ± 0.026 0.378 ± 0.017 0.366 ± 0.012
 OREO-SelfAttention 0.740 ± 0.005 0.426 ± 0.039 0.370 ± 0.023 0.359 ± 0.016
 [5] 0.665 ± 0.006 0.345 ± 0.019 0.270 ± 0.001 0.270 ± 0.001
 [54] 0.652 ± 0.009 0.295 ± 0.018 0.260 ± 0.013 0.249 ± 0.014
 [58] 0.647 ± 0.001 0.296 ± 0.001 0.249 ± 0.001 0.240 ± 0.002
 [60] 0.724 ± 0.003 0.455 ± 0.027 0.423 ± 0.007 0.435 ± 0.012
 [61] 0.682 ± 0.016 0.405 ± 0.004 0.383 ± 0.012 0.389 ± 0.007
 [63] 0.628 ± 0.005 0.304 ± 0.021 0.291 ± 0.047 0.258 ± 0.027
 [64] 0.661 ± 0.004 0.421 ± 0.018 0.332 ± 0.017 0.334 ± 0.016

BP
I1
3I
nc
id
en
t

[67] 0.567 ± 0.073 0.553 ± 0.070 0.566 ± 0.069 0.549 ± 0.069
 OREO-LSTM 0.748 ± 0.013 0.466 ± 0.044 0.446 ± 0.041 0.456 ± 0.043
 OREO-Inception 0.762 ± 0.014 0.476 ± 0.042 0.461 ± 0.057 0.465 ± 0.060
 OREO-Image 0.775 ± 0.005 0.468 ± 0.066 0.457 ± 0.052 0.446 ± 0.052
 OREO-Transformer 0.717 ± 0.090 0.344 ± 0.124 0.366 ± 0.076 0.344 ± 0.099
 OREO-SelfAttention 0.776 ± 0.011 0.479 ± 0.069 0.459 ± 0.052 0.451 ± 0.049
 [5] 0.529 ± 0.013 0.342 ± 0.016 0.293 ± 0.006 0.286 ± 0.003
 [54] 0.505 ± 0.007 0.283 ± 0.055 0.266 ± 0.007 0.238 ± 0.014
 [58] 0.582 ± 0.004 0.291 ± 0.003 0.256 ± 0.019 0.235 ± 0.001
 [60] 0.621 ± 0.011 0.411 ± 0.013 0.402 ± 0.008 0.405 ± 0.009
 [61] 0.609 ± 0.007 0.404 ± 0.006 0.386 ± 0.009 0.392 ± 0.008
 [63] 0.502 ± 0.005 0.295 ± 0.046 0.266 ± 0.018 0.246 ± 0.021
 [64] 0.595 ± 0.006 0.404 ± 0.008 0.374 ± 0.010 0.381 ± 0.011

BP
I1
3P
ro
bl
em

[67] 0.428 ± 0.022 0.434 ± 0.050 0.444 ± 0.023 0.415 ± 0.030
 OREO-LSTM 0.839 ± 0.002 0.583 ± 0.004 0.601 ± 0.000 0.582 ± 0.001
 OREO-Inception 0.839 ± 0.002 0.596 ± 0.019 0.601 ± 0.000 0.518 ± 0.001
 OREO-Image 0.838 ± 0.002 0.589 ± 0.003 0.601 ± 0.000 0.517 ± 0.002
 OREO-Transformer 0.838 ± 0.002 0.599 ± 0.003 0.600 ± 0.000 0.516 ± 0.002
 OREO-SelfAttention 0.838 ± 0.001 0.593 ± 0.018 0.601 ± 0.000 0.516 ± 0.001
 [5] 0.804 ± 0.024 0.454 ± 0.013 0.563 ± 0.014 0.496 ± 0.014
 [54] 0.817 ± 0.003 0.461 ± 0.001 0.571 ± 0.000 0.504 ± 0.001
 [58] 0.857 ± 0.002 0.602 ± 0.044 0.624 ± 0.001 0.566 ± 0.001
 [60] 0.894 ± 0.001 0.820 ± 0.010 0.715 ± 0.002 0.721 ± 0.002
 [61] 0.814 ± 0.002 0.666 ± 0.025 0.576 ± 0.000 0.530 ± 0.008
 [63] 0.817 ± 0.002 0.485 ± 0.024 0.571 ± 0.000 0.505 ± 0.001
 [64] 0.819 ± 0.003 0.701 ± 0.028 0.578 ± 0.003 0.529 ± 0.011

BP
I1
7O
ffe
r

[67] 0.793 ± 0.002 0.679 ± 0.003 0.806 ± 0.002 0.730 ± 0.002
 OREO-LSTM 0.985 ± 0.001 0.622 ± 0.019 0.599 ± 0.003 0.608 ± 0.006
 OREO-Inception 0.985 ± 0.001 0.629 ± 0.014 0.591 ± 0.013 0.603 ± 0.015
 OREO-Image 0.984 ± 0.002 0.611 ± 0.021 0.554 ± 0.013 0.548 ± 0.010
 OREO-Transformer 0.984 ± 0.001 0.579 ± 0.066 0.556 ± 0.030 0.550 ± 0.034
 OREO-SelfAttention 0.983 ± 0.002 0.558 ± 0.014 0.552 ± 0.030 0.545 ± 0.024
 [5] 0.856 ± 0.004 0.527 ± 0.020 0.433 ± 0.003 0.428 ± 0.002
 [54] 0.857 ± 0.004 0.499 ± 0.014 0.423 ± 0.017 0.425 ± 0.017
 [58] 0.879 ± 0.003 0.425 ± 0.049 0.405 ± 0.027 0.390 ± 0.026
 [60] 0.882 ± 0.004 0.586 ± 0.006 0.472 ± 0.036 0.491 ± 0.040
 [61] 0.858 ± 0.002 0.503 ± 0.020 0.425 ± 0.015 0.418 ± 0.015
 [63] 0.855 ± 0.003 0.507 ± 0.009 0.424 ± 0.016 0.418 ± 0.014
 [64] 0.856 ± 0.004 0.500 ± 0.023 0.420 ± 0.016 0.411 ± 0.013

BP
I2
0R
eq
ue
st

[67] 0.914 ± 0.004 0.612 ± 0.004 0.604 ± 0.004 0.608 ± 0.003
accurately capture activity sequences, and integrates time lag informa-
tion. Together, these elements create a robust process representation
that effectively captures only the relevant information needed for the
next activity prediction task.

To further validate our approach, we analyzed the computational
aspects of all methods, considering preprocessing time, training time,
and model size (number of learnable weights), as shown in Tables 19
and 20. This analysis provides insights into the practical applicability
and efficiency of each method. The analysis reveals interesting patterns
across different architectures and datasets. In terms of preprocessing
time, OREO variants generally show consistent and relatively low
preprocessing times (1–90 s), with OREO-Image requiring slightly more
preprocessing time than other variants due to an additional step needed
16
to create the imageset using the DeepInsight method [77]. In contrast,
some competitors like [64,67] require significantly longer preprocess-
ing (up to 1400 s) to prepare the logs to be effectively exploited by
their neural networks for the learning phase.

Regarding training time, OREO variants demonstrate efficient per-
formance. OREO-Inception consistently shows the fastest training times
among our variants (5–172 s), followed by OREO-Image (10–148 s)
and OREO-LSTM (51–306 s). OREO-Transformer typically requires the
longest training time among our variants (81–829 s). Compared to
competitors, our methods show substantially faster training times, with
some competitors requiring up to 9300 s (e.g., [60,67] on BPI12 W).
Thus, from the analysis of preprocessing and training time, it emerges
that some of the closest competitors (in terms of F-score and accuracy),

A. Pellicani and M. Ceci Knowledge-Based Systems 319 (2025) 113544
Table 16
Comparison of AUC and AUPRC achieved by OREO models and the state-
of-the-art methods described in [5], [54], [58], [60], [61], [63], [64]
and [67] for BPI12Complete, BPI12 W, BPI12WComplete and Receipt
datasets. The best results are in bold.
 Approach AUC AUPRC

BP
I1
2C
om

pl
et
e

OREO-LSTM 0.817 ± 0.002 0.496 ± 0.012
 OREO-Inception 0.813 ± 0.003 0.501 ± 0.005
 OREO-Image 0.802 ± 0.002 0.493 ± 0.012
 OREO-Transformer 0.811 ± 0.002 0.512 ± 0.002
 OREO-SelfAttention 0.803 ± 0.004 0.505 ± 0.009
 [5] 0.809 ± 0.001 0.522 ± 0.003
 [54] 0.785 ± 0.001 0.462 ± 0.003
 [58] 0.762 ± 0.002 0.410 ± 0.004
 [60] 0.810 ± 0.002 0.526 ± 0.005
 [61] 0.810 ± 0.004 0.518 ± 0.006
 [63] 0.795 ± 0.004 0.477 ± 0.005
 [64] 0.807 ± 0.002 0.516 ± 0.003
 [67] 0.810 ± 0.008 0.491 ± 0.003

BP
I1
2W

OREO-LSTM 0.860 ± 0.006 0.638 ± 0.012
 OREO-Inception 0.860 ± 0.003 0.636 ± 0.005
 OREO-Image 0.858 ± 0.004 0.645 ± 0.005
 OREO-Transformer 0.855 ± 0.002 0.627 ± 0.004
 OREO-SelfAttention 0.822 ± 0.009 0.572 ± 0.010
 [5] 0.840 ± 0.004 0.601 ± 0.005
 [54] 0.801 ± 0.009 0.533 ± 0.027
 [58] 0.794 ± 0.001 0.492 ± 0.003
 [60] 0.844 ± 0.007 0.623 ± 0.008
 [61] 0.848 ± 0.003 0.622 ± 0.003
 [63] 0.825 ± 0.005 0.576 ± 0.007
 [64] 0.838 ± 0.006 0.611 ± 0.004
 [67] 0.834 ± 0.044 0.639 ± 0.008

BP
I1
2W

Co
m
pl
et
e

OREO-LSTM 0.841 ± 0.009 0.585 ± 0.022
 OREO-Inception 0.827 ± 0.003 0.565 ± 0.003
 OREO-Image 0.869 ± 0.010 0.629 ± 0.020
 OREO-Transformer 0.849 ± 0.003 0.594 ± 0.011
 OREO-SelfAttention 0.808 ± 0.010 0.522 ± 0.009
 [5] 0.799 ± 0.005 0.534 ± 0.008
 [54] 0.771 ± 0.008 0.488 ± 0.008
 [58] 0.740 ± 0.001 0.425 ± 0.002
 [60] 0.824 ± 0.005 0.586 ± 0.002
 [61] 0.826 ± 0.004 0.582 ± 0.013
 [63] 0.775 ± 0.007 0.498 ± 0.013
 [64] 0.812 ± 0.003 0.570 ± 0.010
 [67] 0.861 ± 0.010 0.619 ± 0.003

Re
ce
ip
t

OREO-LSTM 0.766 ± 0.003 0.481 ± 0.012
 OREO-Inception 0.748 ± 0.025 0.449 ± 0.051
 OREO-Image 0.757 ± 0.025 0.461 ± 0.049
 OREO-Transformer 0.754 ± 0.016 0.461 ± 0.046
 OREO-SelfAttention 0.758 ± 0.012 0.466 ± 0.040
 [5] 0.748 ± 0.012 0.425 ± 0.056
 [54] 0.738 ± 0.007 0.414 ± 0.028
 [58] 0.720 ± 0.015 0.375 ± 0.044
 [60] 0.754 ± 0.029 0.444 ± 0.075
 [61] 0.756 ± 0.020 0.452 ± 0.047
 [63] 0.703 ± 0.050 0.367 ± 0.112
 [64] 0.730 ± 0.036 0.431 ± 0.083
 [67] 0.756 ± 0.035 0.435 ± 0.014

like [60,67], require a higher computational complexity to achieve
their results. As further confirmed by the statistical analysis shown in
Fig. 10, OREO variants consistently ranked among the fastest methods.
While some approaches like [58,63] show comparable total times,
it is important to note that they achieve significantly lower predic-
tive performance, making our methods more efficient in terms of the
accuracy-time trade-off. We motivate this behavior with the core idea of
OREO of combining the sliding window mechanism with the positional
encoding that allows the method to represent only relevant information
for the inference task.

These conclusions are further supported by analyzing the number
of learnable weights, which generally indicates model complexity and
directly correlates with memory consumption during both training and
17
Table 17
Comparison of AUC and AUPRC achieved by OREO models and state-of-
the-art methods described in [5], [54], [58], [60], [61], [63], [64] and
[67] for BPI13Incident, BPI13Problem, BPI17Offer and BPI20Request
datasets. The best results are in bold.
 Approach AUC AUPRC

BP
I1
3I
nc
id
en
t

OREO-LSTM 0.677 ± 0.008 0.299 ± 0.009
 OREO-Inception 0.680 ± 0.007 0.303 ± 0.009
 OREO-Image 0.670 ± 0.008 0.291 ± 0.009
 OREO-Transformer 0.678 ± 0.008 0.298 ± 0.009
 OREO-SelfAttention 0.673 ± 0.012 0.292 ± 0.014
 [5] 0.625 ± 0.006 0.221 ± 0.012
 [54] 0.612 ± 0.007 0.208 ± 0.010
 [58] 0.601 ± 0.006 0.196 ± 0.011
 [60] 0.698 ± 0.003 0.297 ± 0.019
 [61] 0.676 ± 0.006 0.262 ± 0.010
 [63] 0.625 ± 0.020 0.211 ± 0.017
 [64] 0.648 ± 0.008 0.238 ± 0.011
 [67] 0.706 ± 0.019 0.301 ± 0.056

BP
I1
3P
ro
bl
em

OREO-LSTM 0.703 ± 0.017 0.322 ± 0.035
 OREO-Inception 0.706 ± 0.025 0.333 ± 0.043
 OREO-Image 0.710 ± 0.023 0.339 ± 0.043
 OREO-Transformer 0.655 ± 0.056 0.279 ± 0.046
 OREO-SelfAttention 0.711 ± 0.023 0.342 ± 0.042
 [5] 0.607 ± 0.008 0.236 ± 0.012
 [54] 0.584 ± 0.004 0.210 ± 0.004
 [58] 0.592 ± 0.004 0.210 ± 0.004
 [60] 0.665 ± 0.005 0.296 ± 0.009
 [61] 0.656 ± 0.005 0.286 ± 0.007
 [63] 0.584 ± 0.011 0.208 ± 0.010
 [64] 0.648 ± 0.006 0.278 ± 0.007
 [67] 0.691 ± 0.031 0.338 ± 0.036

BP
I1
7O
ffe
r

OREO-LSTM 0.782 ± 0.000 0.493 ± 0.001
 OREO-Inception 0.782 ± 0.000 0.493 ± 0.001
 OREO-Image 0.781 ± 0.000 0.493 ± 0.001
 OREO-Transformer 0.781 ± 0.000 0.493 ± 0.001
 OREO-SelfAttention 0.781 ± 0.000 0.493 ± 0.001
 [5] 0.765 ± 0.009 0.478 ± 0.015
 [54] 0.770 ± 0.000 0.487 ± 0.001
 [58] 0.802 ± 0.000 0.545 ± 0.001
 [60] 0.849 ± 0.002 0.632 ± 0.002
 [61] 0.772 ± 0.000 0.490 ± 0.002
 [63] 0.770 ± 0.000 0.487 ± 0.001
 [64] 0.774 ± 0.001 0.493 ± 0.004
 [67] 0.504 ± 0.003 0.480 ± 0.001

BP
I2
0R
eq
ue
st

OREO-LSTM 0.789 ± 0.002 0.534 ± 0.009
 OREO-Inception 0.785 ± 0.006 0.532 ± 0.013
 OREO-Image 0.776 ± 0.007 0.511 ± 0.009
 OREO-Transformer 0.778 ± 0.015 0.516 ± 0.027
 OREO-SelfAttention 0.781 ± 0.015 0.518 ± 0.019
 [5] 0.711 ± 0.001 0.404 ± 0.003
 [54] 0.706 ± 0.017 0.396 ± 0.015
 [58] 0.698 ± 0.013 0.374 ± 0.029
 [60] 0.738 ± 0.009 0.434 ± 0.014
 [61] 0.707 ± 0.007 0.397 ± 0.016
 [63] 0.706 ± 0.008 0.395 ± 0.013
 [64] 0.704 ± 0.007 0.393 ± 0.013
 [67] 0.724 ± 0.011 0.525 ± 0.756

inference. In this sense, OREO variants maintain relatively compact
models. OREO-Image consistently shows the smallest model size (17K–
295K parameters), while OREO-SelfAttention typically has the largest
(451K–515K parameters). These sizes are generally competitive with
or smaller than most baselines, particularly compared to methods
like [64] which can reach up to 14M parameters.

6. Conclusions

This paper proposes a novel method for next activity prediction
from event logs, called OREO, which performs event log encoding,
based on sliding windows. It exploits relative activity position to re-
align the partial traces and extract useful information on traces and

A. Pellicani and M. Ceci Knowledge-Based Systems 319 (2025) 113544
Table 18
Comparison of the average F-score and precision rank for the proposed model versus competitors, categorized
by model architecture.
 Architecture Approach Avg Fscore rank Avg accuracy rank

LSTM

OREO-LSTM 2.563 3.188
 [5] 9.500 9.875
 [54] 11.500 10.438
 [58] 11.750 10.000
 [60] 5.938 4.750

CNN

OREO-Image 4.125 3.500
 OREO-Inception 3.250 3.563
 [63] 11.063 11.563
 [64] 8.750 8.438
 Transformer OREO-Transformer 5.625 3.813
 [67] 2.813 9.875
 Attention-based OREO-SelfAttention 6.563 4.688
 [61] 7.563 7.313
Table 19
Preprocessing and training times (in seconds) and the number of weights for each evaluated model on the
BPI12Complete, BPI12 W, BPI12WComplete, and Receipt datasets.
 Approach Preprocessing time Training time Weights

BP
I1
2C
om

pl
et
e

OREO-LSTM 25.44 202.36 171K
 OREO-Inception 25.44 130.25 68K
 OREO-Image 89.66 142.07 38K
 OREO-Transformer 25.44 581.72 357K
 OREO-SelfAttention 25.44 182.90 502K
 [5] 25.69 1745.70 216K
 [54] 276.45 4493.54 329K
 [58] 23.01 163.83 10K
 [60] 34.55 7715.91 118K
 [61] 32.14 1965.73 132K
 [63] 52.86 181.03 626K
 [64] 827.63 982.56 6M
 [67] 839.41 7177.86 34K

BP
I1
2W

OREO-LSTM 25.60 241.29 37K
 OREO-Inception 25.60 149.00 63K
 OREO-Image 75.28 195.89 17K
 OREO-Transformer 25.60 819.17 276K
 OREO-SelfAttention 25.60 166.05 493K
 [5] 34.61 1898.50 214K
 [54] 282.38 4232.03 329K
 [58] 23.23 235.17 10K
 [60] 36.58 9309.19 72K
 [61] 32.89 2745.14 119K
 [63] 10.55 59.04 650K
 [64] 654.24 687.48 2,1M
 [67] 930.62 7667.45 36K

BP
I1
2W

Co
m
pl
et
e

OREO-LSTM 10.75 118.61 101K
 OREO-Inception 10.75 79.65 28K
 OREO-Image 16.92 65.16 29K
 OREO-Transformer 10.75 405.33 44K
 OREO-SelfAttention 10.75 77.83 451K
 [5] 6.64 719.39 207K
 [54] 183.24 1778.82 327K
 [58] 10.66 393.59 9K
 [60] 14.58 1541.54 83K
 [61] 13.16 356.50 105K
 [63] 11.38 59.07 40K
 [64] 85.89 148.76 902K
 [67] 126.50 2757.88 32K

Re
ce
ip
t

OREO-LSTM 1.40 54.88 43K
 OREO-Inception 1.40 9.58 93K
 OREO-Image 6.85 11.75 21K
 OREO-Transformer 1.40 103.28 481K
 OREO-SelfAttention 1.40 41.19 515K
 [5] 0.59 214.45 217K
 [54] 55.14 538.90 329K
 [58] 1.83 338.30 10K
 [60] 2.68 295.56 99K
 [61] 1.56 134.32 115K
 [63] 1.53 9.61 588K
 [64] 51.02 50.87 7,4M
 [67] 3.89 402.21 32K
18

A. Pellicani and M. Ceci Knowledge-Based Systems 319 (2025) 113544
Table 20
Preprocessing and training times (in seconds) and the number of weights for each evaluated model on the
BPI13Incident, BPI13Problem, BPI17Offer, and BPI20Request datasets.
 Approach Preprocessing time Training time Weights

BP
I1
3I
nc
id
en
t

OREO-LSTM 10.31 83.36 137K
 OREO-Inception 10.31 38.57 68K
 OREO-Image 20.55 35.02 18K
 OREO-Transformer 10.31 263.02 138K
 OREO-SelfAttention 10.31 86.35 472K
 [5] 7.02 1229.75 210K
 [54] 295.01 2461.71 327K
 [58] 15.55 309.02 9K
 [60] 25.74 1414.45 2M
 [61] 12.09 372.87 3.5M
 [63] 11.64 84.89 583K
 [64] 1418.74 1014.59 14M
 [67] 103.72 2790.06 34K

BP
I1
3P
ro
bl
em

OREO-LSTM 1.57 51.47 182K
 OREO-Inception 1.57 5.63 71K
 OREO-Image 2.67 10.80 29K
 OREO-Transformer 1.57 81.12 55K
 OREO-SelfAttention 1.57 39.70 454K
 [5] 0.37 303.80 208K
 [54] 40.96 473.97 327K
 [58] 1.49 181.34 9K
 [60] 3.01 132.22 535K
 [61] 1.70 71.63 1M
 [63] 1.13 8.73 565K
 [64] 64.21 52.16 12M
 [67] 3.44 372.00 31K

BP
I1
7O
ffe
r

OREO-LSTM 32.94 306.56 254K
 OREO-Inception 32.94 172.96 415K
 OREO-Image 46.67 148.57 39K
 OREO-Transformer 32.94 829.64 44K
 OREO-SelfAttention 32.94 322.93 451K
 [5] 8.98 6443.18 208K
 [54] 427.92 8629.07 327K
 [58] 40.39 220.69 9K
 [60] 65.14 2581.88 117K
 [61] 33.57 718.10 202K
 [63] 32.67 174.74 34K
 [64] 750.05 681.28 1,4M
 [67] 1180.13 8150.20 30K

BP
I2
0R
eq
ue
st

OREO-LSTM 6.16 58.02 181K
 OREO-Inception 6.16 20.57 456K
 OREO-Image 15.31 33.16 295K
 OREO-Transformer 6.16 182.29 259K
 OREO-SelfAttention 6.16 57.04 491K
 [5] 2.19 707.25 213K
 [54] 61.68 1070.26 329K
 [58] 6.84 176.75 10K
 [60] 10.12 640.25 364K
 [61] 6.69 432.02 61K
 [63] 5.92 28.78 586K
 [64] 39.00 266.86 2,1M
 [67] 35.84 1612.15 32K
temporal patterns among the activities. OREO is designed to work
with different deep learning architectures, based on LSTMs, CNNs, and
attention-based models.

We evaluated the proposed method on several real-world process
mining datasets for the next activity prediction of running traces. The
(statistical) comparison of OREO performances, in all its five variants,
with those achieved by eight other competitors, show the superiority of
our method. This confirms our initial intuition that the encoding which
(i) adapts to sliding windows and (ii) is able to model the position of
the activities within the sliding windows, is beneficial.

The method’s versatility makes it particularly suitable for various
industrial applications. In manufacturing, OREO can enhance produc-
tion planning by predicting next operations and potential bottlenecks.
In healthcare, it can support patient flow management by anticipating
next treatment steps and resource requirements. In financial services,
it can improve customer service by predicting next client interactions
19
and preparing appropriate responses. Furthermore, In IoT-enabled en-
vironments, it can process real-time sensor data to predict maintenance
needs and optimize resource utilization. The sliding window approach
is particularly valuable in these contexts as it allows for real-time
adaptation to changing process patterns.

Despite these promising results, we acknowledge certain limitations
of our approach. The sliding window size needs to be carefully tuned
based on the specific process characteristics, as it affects both predic-
tion accuracy and computational efficiency. Additionally, the method’s
performance might be affected when dealing with highly irregular
processes where the temporal patterns are less evident. The current
implementation also assumes that all activities within the sliding win-
dow have equal importance, which might not always reflect real-world
scenarios.

To possibly address these limitations, as future work, we plan to
implement an adaptive window size mechanism that automatically

A. Pellicani and M. Ceci Knowledge-Based Systems 319 (2025) 113544
Fig. 8. Comparison of the F-score achieved by the OREO models and their competitors
through the Nemenyi test. Approaches that are not significantly different are connected
by a red line.

Fig. 9. Comparison of the accuracy achieved by the OREO models and their com-
petitors through the Nemenyi test. Approaches that are not significantly different are
connected by a red line.

Fig. 10. Comparison of the total running time (preprocessing + training) of the OREO
variants and competitors. Models on the right side have lower running times. According
to the Nemenyi test, the approaches that are not significantly different are connected
by a red line.

determines the size on the basis of process characteristics, possibly com-
bining multiple window sizes for more robust predictions. Additionally,
we will investigate enhanced temporal pattern detection techniques to
better handle irregular processes, making OREO more effective across
various real-world scenarios.

Furthermore, while this paper demonstrates the effectiveness of
OREO for next activity prediction, its position-aware encoding ap-
proach shows promise for other predictive process monitoring tasks.
For trace completion time prediction, the relative positions encoded
by OREO could help capture temporal dependencies that influence
completion times, particularly in processes with parallel activities or
varying execution speeds. For outcome prediction, the method’s ability
20
to capture activity patterns within windows could be leveraged to
identify sequence signatures that correlate with specific outcomes. The
sliding window mechanism could be particularly valuable for early
outcome prediction, as it naturally handles partial traces. Additionally,
the method could be extended to predict multiple activities ahead
or even entire trace suffixes, where the position encoding could help
maintain sequential consistency in the predictions. These extensions
would further expand OREO’s practical applications across different do-
mains while maintaining its core advantages in position-aware pattern
recognition.

CRediT authorship contribution statement

Antonio Pellicani: Writing – original draft, Validation, Software,
Methodology, Investigation, Formal analysis, Data curation, Conceptu-
alization. Michelangelo Ceci: Writing – review & editing, Validation,
Supervision, Funding acquisition, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was partially supported by the project FAIR - Future AI
Research (PE00000013), Spoke 6 - Symbiotic AI, under the NRRP MUR
program funded by the NextGenerationEU. The research presented in
this paper was also partially supported by the Italian MUR, through
the project ‘‘MAD – La metamorfosi Additiva del Design’’, Grant No.
ARS01_00717 (MAD – The Additive Metamorphosis of Design) for the
activities of WP3 & WP5.

Data availability

Data will be made available on request.

References

[1] M. Dumas, W.M. van der Aalst, A.H. ter Hofstede, Process-Aware Information
Systems: Bridging People and Software Through Process Technology, John Wiley
& Sons, Inc., New York, NY, USA, 2005, http://dx.doi.org/10.1002/0471741442.

[2] W.M.P. van der Aalst, Process Mining: Data Science in Action, second ed.,
Springer, Heidelberg, 2016, http://dx.doi.org/10.1007/978-3-662-49851-4.

[3] W. van der Aalst, A. Adriansyah, A.K.A. De Medeiros, F. Arcieri, T. Baier, T.
Blickle, J.C. Bose, P. Van Den Brand, R. Brandtjen, J. Buijs, et al., Process
mining manifesto, in: International Conference on Business Process Management,
Springer, 2011, pp. 169–194, http://dx.doi.org/10.1007/978-3-642-28108-2_19.

[4] W.M. van der Aalst, Decision support based on process mining, in: Handbook on
Decision Support Systems 1: Basic Themes, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008, pp. 637–657, http://dx.doi.org/10.1007/978-3-540-48713-5_
29.

[5] N. Tax, I. Verenich, M. La Rosa, M. Dumas, Predictive business process mon-
itoring with LSTM neural networks, in: International Conference on Advanced
Information Systems Engineering, Springer, 2017, pp. 477–492, http://dx.doi.
org/10.1007/978-3-319-59536-8_30.

[6] T. Nolle, S. Luettgen, A. Seeliger, M. Mühlhäuser, Analyzing business process
anomalies using autoencoders, Mach. Learn. 107 (11) (2018) 1875–1893, http:
//dx.doi.org/10.1007/s10994-018-5702-8.

[7] R.S. Oyamada, G.M. Tavares, S.B. Junior, P. Ceravolo, Enhancing predictive
process monitoring with time-related feature engineering, in: International Con-
ference on Advanced Information Systems Engineering, Springer, 2024, pp.
71–86, http://dx.doi.org/10.1007/978-3-031-61057-8_5.

[8] S. Barbon Junior, P. Ceravolo, E. Damiani, G. Marques Tavares, Evaluating trace
encoding methods in process mining, in: International Symposium: From Data to
Models and Back, Springer, 2020, pp. 174–189, http://dx.doi.org/10.1007/978-
3-030-70650-0_11.

[9] A. Leontjeva, R. Conforti, C. Di Francescomarino, M. Dumas, F.M. Maggi,
Complex symbolic sequence encodings for predictive monitoring of business pro-
cesses, in: International Conference on Business Process Management, Springer,
2016, pp. 297–313, http://dx.doi.org/10.1007/978-3-319-23063-4_21.

http://dx.doi.org/10.1002/0471741442
http://dx.doi.org/10.1007/978-3-662-49851-4
http://dx.doi.org/10.1007/978-3-642-28108-2_19
http://dx.doi.org/10.1007/978-3-540-48713-5_29
http://dx.doi.org/10.1007/978-3-540-48713-5_29
http://dx.doi.org/10.1007/978-3-540-48713-5_29
http://dx.doi.org/10.1007/978-3-319-59536-8_30
http://dx.doi.org/10.1007/978-3-319-59536-8_30
http://dx.doi.org/10.1007/978-3-319-59536-8_30
http://dx.doi.org/10.1007/s10994-018-5702-8
http://dx.doi.org/10.1007/s10994-018-5702-8
http://dx.doi.org/10.1007/s10994-018-5702-8
http://dx.doi.org/10.1007/978-3-031-61057-8_5
http://dx.doi.org/10.1007/978-3-030-70650-0_11
http://dx.doi.org/10.1007/978-3-030-70650-0_11
http://dx.doi.org/10.1007/978-3-030-70650-0_11
http://dx.doi.org/10.1007/978-3-319-23063-4_21

A. Pellicani and M. Ceci Knowledge-Based Systems 319 (2025) 113544
[10] T.K. Ho, M. Basu, Complexity measures of supervised classification problems,
IEEE Trans. Pattern Anal. Mach. Intell. 24 (3) (2002) 289–300, http://dx.doi.
org/10.1109/34.990132.

[11] J. Gama, I. Žliobaitundefined, A. Bifet, M. Pechenizkiy, A. Bouchachia, A survey
on concept drift adaptation, ACM Comput. Surv. 46 (4) (2014) http://dx.doi.
org/10.1145/2523813.

[12] S. Lund, J. Manyika, S. Nyquist, L. Mendonca, S. Ramaswamy, Game Changers:
Five Opportunities for US Growth and Renewal, McKinsey & Company, 2013.

[13] C. Di Francescomarino, C. Ghidini, Predictive process monitoring, in: Process
Mining Handbook, Springer International Publishing Cham, 2022, pp. 320–346,
http://dx.doi.org/10.1007/978-3-031-08848-3_10.

[14] P. Ceravolo, M. Comuzzi, J. De Weerdt, C. Di Francescomarino, F.M. Maggi, Pre-
dictive process monitoring: concepts, challenges, and future research directions,
Process. Sci. 1 (1) (2024) 1–22, http://dx.doi.org/10.1007/s44311-024-00002-4.

[15] A. Corallo, M. Lazoi, F. Striani, Process mining and industrial applications: A
systematic literature review, Knowl. Process. Manag. 27 (3) (2020) 225–233,
http://dx.doi.org/10.1002/kpm.1630.

[16] F.M. Maggi, C. Di Francescomarino, M. Dumas, C. Ghidini, Predictive monitoring
of business processes, in: International Conference on Advanced Information
Systems Engineering, Springer, 2014, pp. 457–472, http://dx.doi.org/10.1007/
978-3-319-07881-6_31.

[17] C. Di Francescomarino, C. Ghidini, F.M. Maggi, F. Milani, Predictive process
monitoring methods: Which one suits me best? in: M. Weske, M. Montali, I.
Weber, J. vom Brocke (Eds.), Business Process Management, Springer Interna-
tional Publishing, Cham, 2018, pp. 462–479, http://dx.doi.org/10.1007/978-3-
319-98648-7_27.

[18] G. Park, M. Song, Prediction-based resource allocation using LSTM and minimum
cost and maximum flow algorithm, in: 2019 International Conference on Process
Mining, ICPM, IEEE, 2019, pp. 121–128, http://dx.doi.org/10.1109/ICPM.2019.
00027.

[19] S. Weinzierl, S. Zilker, M. Stierle, M. Matzner, G. Park, From predictive to
prescriptive process monitoring: Recommending the next best actions instead
of calculating the next most likely events, in: Wirtschaftsinformatik (Zentrale
Tracks), 2020, pp. 364–368, http://dx.doi.org/10.30844/wi_2020_c12-weinzierl.

[20] C. Di Francescomarino, C. Ghidini, F.M. Maggi, G. Petrucci, A. Yeshchenko, An
eye into the future: leveraging a-priori knowledge in predictive business pro-
cess monitoring, in: International Conference on Business Process Management,
Springer, 2017, pp. 252–268, http://dx.doi.org/10.1007/978-3-319-65000-5_15.

[21] T. Nolle, S. Luettgen, A. Seeliger, M. Mühlhäuser, Binet: Multi-perspective
business process anomaly classification, Inf. Syst. 103 (2022) 101458, http:
//dx.doi.org/10.1016/j.is.2019.101458.

[22] R. Conforti, M. de Leoni, M. La Rosa, W.M. van der Aalst, A.H. ter Hofstede,
A recommendation system for predicting risks across multiple business process
instances, Decis. Support Syst. 69 (2015) 1–19, http://dx.doi.org/10.1016/j.dss.
2014.10.006.

[23] A. Pika, W.M. van der Aalst, C.J. Fidge, A.H. Ter Hofstede, M.T. Wynn, Profiling
event logs to configure risk indicators for process delays, in: International
Conference on Advanced Information Systems Engineering, Springer, 2013, pp.
465–481, http://dx.doi.org/10.1007/978-3-642-38709-8_30.

[24] P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dustdar, F. Leymann,
Runtime prediction of service level agreement violations for composite services,
in: Service-Oriented Computing. ICSOC/ServiceWave 2009 Workshops, Springer,
2009, pp. 176–186, http://dx.doi.org/10.1007/978-3-642-16132-2_17.

[25] L. Zeng, C. Lingenfelder, H. Lei, H. Chang, Event-driven quality of service
prediction, in: International Conference on Service-Oriented Computing, Springer,
2008, pp. 147–161, http://dx.doi.org/10.1007/978-3-540-89652-4_14.

[26] A.E. Márquez-Chamorro, M. Resinas, A. Ruiz-Cortés, M. Toro, Run-time predic-
tion of business process indicators using evolutionary decision rules, Expert Syst.
Appl. 87 (2017) 1–14, http://dx.doi.org/10.1016/j.eswa.2017.05.069.

[27] H. Nguyen, M. Dumas, M. La Rosa, F.M. Maggi, S. Suriadi, Mining business
process deviance: a quest for accuracy, in: OTM Confederated International
Conferences" on the Move to Meaningful Internet Systems", Springer, 2014, pp.
436–445, http://dx.doi.org/10.1007/978-3-662-45563-0_25.

[28] T.B. Hong Tu, M. Song, Analysis and prediction cost of manufacturing process
based on process mining, in: 2016 International Conference on Industrial
Engineering, Management Science and Application, ICIMSA, 2016, pp. 1–5,
http://dx.doi.org/10.1109/ICIMSA.2016.7503993.

[29] C. Di Francescomarino, M. Dumas, F.M. Maggi, I. Teinemaa, Clustering-based
predictive process monitoring, IEEE Trans. Serv. Comput. 12 (6) (2019) 896–909,
http://dx.doi.org/10.1109/TSC.2016.2645153.

[30] M. Weske, Business process management architectures, in: Business Process
Management: Concepts, Languages, Architectures, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2007, pp. 305–343, http://dx.doi.org/10.1007/978-3-642-
28616-2_7.

[31] A.C. Choueiri, D.M.V. Sato, E.E. Scalabrin, E.A.P. Santos, An extended model
for remaining time prediction in manufacturing systems using process mining, J.
Manuf. Syst. 56 (2020) 188–201, http://dx.doi.org/10.1016/j.jmsy.2020.06.003.

[32] W.M. van der Aalst, M.H. Schonenberg, M. Song, Time prediction based on
process mining, Inf. Syst. 36 (2) (2011) 450–475, http://dx.doi.org/10.1016/
j.is.2010.09.001.
21
[33] M. Polato, A. Sperduti, A. Burattin, M. de Leoni, Data-aware remaining time
prediction of business process instances, in: 2014 International Joint Conference
on Neural Networks, IJCNN, IEEE, 2014, pp. 816–823, http://dx.doi.org/10.
1109/IJCNN.2014.6889360.

[34] M. Ceci, P.F. Lanotte, F. Fumarola, D.P. Cavallo, D. Malerba, Completion time
and next activity prediction of processes using sequential pattern mining, in:
International Conference on Discovery Science, Springer, 2014, pp. 49–61, http:
//dx.doi.org/10.1007/978-3-319-11812-3_5.

[35] M. de Leoni, W.M. van der Aalst, M. Dees, A general process mining framework
for correlating, predicting and clustering dynamic behavior based on event logs,
Inf. Syst. 56 (2016) 235–257, http://dx.doi.org/10.1016/j.is.2015.07.003.

[36] A. Senderovich, C. Di Francescomarino, C. Ghidini, K. Jorbina, F.M. Maggi,
Intra and inter-case features in predictive process monitoring: A tale of two
dimensions, in: International Conference on Business Process Management,
Springer, 2017, pp. 306–323, http://dx.doi.org/10.1007/978-3-319-65000-5_18.

[37] I. Verenich, H. Nguyen, M. La Rosa, M. Dumas, White-box prediction of
process performance indicators via flow analysis, in: Proceedings of the 2017
International Conference on Software and System Process, 2017, pp. 85–94,
http://dx.doi.org/10.1145/3084100.3084110.

[38] G.M. Tavares, R.S. Oyamada, S.B. Junior, P. Ceravolo, Trace encoding in process
mining: A survey and benchmarking, Eng. Appl. Artif. Intell. 126 (2023) 107028,
http://dx.doi.org/10.1016/j.engappai.2023.107028.

[39] J. Evermann, J.-R. Rehse, P. Fettke, A deep learning approach for predicting
process behaviour at runtime, in: Business Process Management Workshops:
BPM 2016 International Workshops, Rio de Janeiro, Brazil, September 19, 2016,
Revised Papers 14, Springer, 2017, pp. 327–338, http://dx.doi.org/10.1007/978-
3-319-58457-7_24.

[40] P. De Koninck, S. vanden Broucke, J. De Weerdt, act2vec, trace2vec, log2vec,
and model2vec: Representation learning for business processes, in: Business
Process Management: 16th International Conference, BPM 2018, Sydney, NSW,
Australia, September 9–14, 2018, Proceedings 16, Springer, 2018, pp. 305–321,
http://dx.doi.org/10.1007/978-3-319-98648-7_18.

[41] J. Kim, M. Comuzzi, M. Dumas, F.M. Maggi, I. Teinemaa, Encoding resource
experience for predictive process monitoring, Decis. Support Syst. 153 (2022)
113669, http://dx.doi.org/10.1016/j.dss.2021.113669.

[42] W. Rizzi, C. Di Francescomarino, C. Ghidini, F.M. Maggi, How do I update my
model? On the resilience of Predictive Process Monitoring models to change,
Knowl. Inf. Syst. 64 (5) (2022) 1385–1416, http://dx.doi.org/10.1007/s10115-
022-01666-9.

[43] S. Pauwels, T. Calders, Incremental predictive process monitoring: The next
activity case, in: International Conference on Business Process Management,
Springer, 2021, pp. 123–140, http://dx.doi.org/10.1007/978-3-030-85469-0_10.

[44] P. Ceravolo, G.M. Tavares, S.B. Junior, E. Damiani, Evaluation goals for online
process mining: a concept drift perspective, IEEE Trans. Serv. Comput. 15 (4)
(2020) 2473–2489, http://dx.doi.org/10.1109/TSC.2020.3004532.

[45] V. Pasquadibisceglie, A. Appice, G. Castellano, D. Malerba, Darwin: An online
deep learning approach to handle concept drifts in predictive process monitor-
ing, Eng. Appl. Artif. Intell. 123 (2023) 106461, http://dx.doi.org/10.1016/j.
engappai.2023.106461.

[46] D. Breuker, M. Matzner, P. Delfmann, J. Becker, Comprehensible predictive
models for business processes, MIS Q. 40 (4) (2016) 1009–1034, http://dx.doi.
org/10.25300/MISQ/2016/40.4.10.

[47] J. Becker, D. Breuker, P. Delfmann, M. Matzner, Designing and implementing
a framework for event-based predictive modelling of business processes, Enterp.
Model. Inf. Syst. Architectures- EMISA 2014 (2014).

[48] M. Le, B. Gabrys, D. Nauck, A hybrid model for business process event prediction,
in: International Conference on Innovative Techniques and Applications of
Artificial Intelligence, Springer, 2012, pp. 179–192, http://dx.doi.org/10.1007/
978-1-4471-4739-8_13.

[49] G.T. Lakshmanan, D. Shamsi, Y.N. Doganata, M. Unuvar, R. Khalaf, A markov
prediction model for data-driven semi-structured business processes, Knowl. Inf.
Syst. 42 (1) (2015) 97–126, http://dx.doi.org/10.1007/s10115-013-0697-8.

[50] A. Rozinat, W.M. van der Aalst, Decision mining in ProM, in: International
Conference on Business Process Management, Springer, 2006, pp. 420–425,
http://dx.doi.org/10.1007/11841760_33.

[51] M. Ceci, M. Spagnoletta, P.F. Lanotte, D. Malerba, Distributed learning of process
models for next activity prediction, in: Proceedings of the 22nd International
Database Engineering & Applications Symposium, IDEAS 2018, Association for
Computing Machinery, New York, NY, USA, 2018, pp. 278–282, http://dx.doi.
org/10.1145/3216122.3216125.

[52] M. Ceci, A. Impedovo, A. Pellicani, Leveraging multi-target regression for
predicting the next parallel activities in event logs, in: Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, Springer, 2020, pp.
237–248, http://dx.doi.org/10.1007/978-3-030-65965-3_15.

[53] S. Ferilli, S. Angelastro, Activity prediction in process mining using the WoMan
framework, J. Intell. Inf. Syst. 53 (1) (2019) 93–112, http://dx.doi.org/10.1007/
s10844-019-00543-2.

[54] M. Camargo, M. Dumas, O. González-Rojas, Learning accurate LSTM models of
business processes, in: International Conference on Business Process Management,
Springer, 2019, pp. 286–302, http://dx.doi.org/10.1007/978-3-030-26619-6_19.

http://dx.doi.org/10.1109/34.990132
http://dx.doi.org/10.1109/34.990132
http://dx.doi.org/10.1109/34.990132
http://dx.doi.org/10.1145/2523813
http://dx.doi.org/10.1145/2523813
http://dx.doi.org/10.1145/2523813
http://refhub.elsevier.com/S0950-7051(25)00590-8/sb12
http://refhub.elsevier.com/S0950-7051(25)00590-8/sb12
http://refhub.elsevier.com/S0950-7051(25)00590-8/sb12
http://dx.doi.org/10.1007/978-3-031-08848-3_10
http://dx.doi.org/10.1007/s44311-024-00002-4
http://dx.doi.org/10.1002/kpm.1630
http://dx.doi.org/10.1007/978-3-319-07881-6_31
http://dx.doi.org/10.1007/978-3-319-07881-6_31
http://dx.doi.org/10.1007/978-3-319-07881-6_31
http://dx.doi.org/10.1007/978-3-319-98648-7_27
http://dx.doi.org/10.1007/978-3-319-98648-7_27
http://dx.doi.org/10.1007/978-3-319-98648-7_27
http://dx.doi.org/10.1109/ICPM.2019.00027
http://dx.doi.org/10.1109/ICPM.2019.00027
http://dx.doi.org/10.1109/ICPM.2019.00027
http://dx.doi.org/10.30844/wi_2020_c12-weinzierl
http://dx.doi.org/10.1007/978-3-319-65000-5_15
http://dx.doi.org/10.1016/j.is.2019.101458
http://dx.doi.org/10.1016/j.is.2019.101458
http://dx.doi.org/10.1016/j.is.2019.101458
http://dx.doi.org/10.1016/j.dss.2014.10.006
http://dx.doi.org/10.1016/j.dss.2014.10.006
http://dx.doi.org/10.1016/j.dss.2014.10.006
http://dx.doi.org/10.1007/978-3-642-38709-8_30
http://dx.doi.org/10.1007/978-3-642-16132-2_17
http://dx.doi.org/10.1007/978-3-540-89652-4_14
http://dx.doi.org/10.1016/j.eswa.2017.05.069
http://dx.doi.org/10.1007/978-3-662-45563-0_25
http://dx.doi.org/10.1109/ICIMSA.2016.7503993
http://dx.doi.org/10.1109/TSC.2016.2645153
http://dx.doi.org/10.1007/978-3-642-28616-2_7
http://dx.doi.org/10.1007/978-3-642-28616-2_7
http://dx.doi.org/10.1007/978-3-642-28616-2_7
http://dx.doi.org/10.1016/j.jmsy.2020.06.003
http://dx.doi.org/10.1016/j.is.2010.09.001
http://dx.doi.org/10.1016/j.is.2010.09.001
http://dx.doi.org/10.1016/j.is.2010.09.001
http://dx.doi.org/10.1109/IJCNN.2014.6889360
http://dx.doi.org/10.1109/IJCNN.2014.6889360
http://dx.doi.org/10.1109/IJCNN.2014.6889360
http://dx.doi.org/10.1007/978-3-319-11812-3_5
http://dx.doi.org/10.1007/978-3-319-11812-3_5
http://dx.doi.org/10.1007/978-3-319-11812-3_5
http://dx.doi.org/10.1016/j.is.2015.07.003
http://dx.doi.org/10.1007/978-3-319-65000-5_18
http://dx.doi.org/10.1145/3084100.3084110
http://dx.doi.org/10.1016/j.engappai.2023.107028
http://dx.doi.org/10.1007/978-3-319-58457-7_24
http://dx.doi.org/10.1007/978-3-319-58457-7_24
http://dx.doi.org/10.1007/978-3-319-58457-7_24
http://dx.doi.org/10.1007/978-3-319-98648-7_18
http://dx.doi.org/10.1016/j.dss.2021.113669
http://dx.doi.org/10.1007/s10115-022-01666-9
http://dx.doi.org/10.1007/s10115-022-01666-9
http://dx.doi.org/10.1007/s10115-022-01666-9
http://dx.doi.org/10.1007/978-3-030-85469-0_10
http://dx.doi.org/10.1109/TSC.2020.3004532
http://dx.doi.org/10.1016/j.engappai.2023.106461
http://dx.doi.org/10.1016/j.engappai.2023.106461
http://dx.doi.org/10.1016/j.engappai.2023.106461
http://dx.doi.org/10.25300/MISQ/2016/40.4.10
http://dx.doi.org/10.25300/MISQ/2016/40.4.10
http://dx.doi.org/10.25300/MISQ/2016/40.4.10
http://refhub.elsevier.com/S0950-7051(25)00590-8/sb47
http://refhub.elsevier.com/S0950-7051(25)00590-8/sb47
http://refhub.elsevier.com/S0950-7051(25)00590-8/sb47
http://refhub.elsevier.com/S0950-7051(25)00590-8/sb47
http://refhub.elsevier.com/S0950-7051(25)00590-8/sb47
http://dx.doi.org/10.1007/978-1-4471-4739-8_13
http://dx.doi.org/10.1007/978-1-4471-4739-8_13
http://dx.doi.org/10.1007/978-1-4471-4739-8_13
http://dx.doi.org/10.1007/s10115-013-0697-8
http://dx.doi.org/10.1007/11841760_33
http://dx.doi.org/10.1145/3216122.3216125
http://dx.doi.org/10.1145/3216122.3216125
http://dx.doi.org/10.1145/3216122.3216125
http://dx.doi.org/10.1007/978-3-030-65965-3_15
http://dx.doi.org/10.1007/s10844-019-00543-2
http://dx.doi.org/10.1007/s10844-019-00543-2
http://dx.doi.org/10.1007/s10844-019-00543-2
http://dx.doi.org/10.1007/978-3-030-26619-6_19

A. Pellicani and M. Ceci Knowledge-Based Systems 319 (2025) 113544
[55] E. Rama-Maneiro, J.C. Vidal, M. Lama, Deep learning for predictive business
process monitoring: Review and benchmark, IEEE Trans. Serv. Comput. 16 (1)
(2021) 739–756, http://dx.doi.org/10.1109/TSC.2021.3139807.

[56] A. Nguyen, S. Chatterjee, S. Weinzierl, L. Schwinn, M. Matzner, B. Eskofier,
Time matters: Time-aware lstms for predictive business process monitoring, in:
Process Mining Workshops: ICPM 2020 International Workshops, Padua, Italy,
October 5–8, 2020, Revised Selected Papers 2, Springer, 2021, pp. 112–123,
http://dx.doi.org/10.1007/978-3-030-72693-5_9.

[57] J. De Smedt, J. De Weerdt, Predictive process model monitoring using long
short-term memory networks, Eng. Appl. Artif. Intell. 133 (2024) 108295, http:
//dx.doi.org/10.1016/j.engappai.2024.108295.

[58] J. Evermann, J.-R. Rehse, P. Fettke, Predicting process behaviour using deep
learning, Decis. Support Syst. 100 (2017) 129–140, http://dx.doi.org/10.1016/
j.dss.2017.04.003.

[59] L. Lin, L. Wen, J. Wang, Mm-pred: A deep predictive model for multi-
attribute event sequence, in: Proceedings of the 2019 SIAM International
Conference on Data Mining, SIAM, 2019, pp. 118–126, http://dx.doi.org/10.
1137/1.9781611975673.14.

[60] V. Pasquadibisceglie, A. Appice, G. Castellano, D. Malerba, A multi-view deep
learning approach for predictive business process monitoring, IEEE Trans. Serv.
Comput. (2021) http://dx.doi.org/10.1109/TSC.2021.3051771.

[61] B. Wickramanayake, Z. He, C. Ouyang, C. Moreira, Y. Xu, R. Sindhgatta, Building
interpretable models for business process prediction using shared and specialised
attention mechanisms, Knowl.-Based Syst. 248 (2022) 108773, http://dx.doi.org/
10.1016/j.knosys.2022.108773.

[62] N. Mehdiyev, J. Evermann, P. Fettke, A novel business process prediction model
using a deep learning method, Bus. Inf. Syst. Eng. 62 (2) (2020) 143–157,
http://dx.doi.org/10.1007/s12599-018-0551-3.

[63] V. Pasquadibisceglie, A. Appice, G. Castellano, D. Malerba, Using convolutional
neural networks for predictive process analytics, in: 2019 International Confer-
ence on Process Mining, ICPM, 2019, pp. 129–136, http://dx.doi.org/10.1109/
ICPM.2019.00028.

[64] V. Pasquadibisceglie, A. Appice, G. Castellano, D. Malerba, Predictive process
mining meets computer vision, in: BPM, 2020, http://dx.doi.org/10.1007/978-
3-030-58638-6_11.

[65] N. Di Mauro, A. Appice, T.M. Basile, Activity prediction of business process
instances with inception cnn models, in: International Conference of the Italian
Association for Artificial Intelligence, Springer, 2019, pp. 348–361, http://dx.
doi.org/10.1007/978-3-030-35166-3_25.

[66] F. Taymouri, M.L. Rosa, S. Erfani, Z.D. Bozorgi, I. Verenich, Predictive business
process monitoring via generative adversarial nets: the case of next event
prediction, in: Business Process Management: 18th International Conference, BPM
2020, Seville, Spain, September 13–18, 2020, Proceedings 18, Springer, 2020,
pp. 237–256, http://dx.doi.org/10.1007/978-3-030-58666-9_14.

[67] Z.A. Bukhsh, A. Saeed, R.M. Dijkman, Processtransformer: Predictive business
process monitoring with transformer network, 2021, http://dx.doi.org/10.48550/
arXiv.2104.00721, arXiv preprint arXiv:2104.00721.

[68] A. Chiorrini, C. Diamantini, A. Mircoli, D. Potena, Exploiting instance graphs and
graph neural networks for next activity prediction, in: International Conference
on Process Mining, Springer, 2021, pp. 115–126, http://dx.doi.org/10.1007/978-
3-030-98581-3_9.

[69] N. Harane, S. Rathi, Comprehensive survey on deep learning approaches in
predictive business process monitoring, Mod. Approaches Mach. Learn. Cogn.
Sci.: Walkthrough (2020) 115–128, http://dx.doi.org/10.1007/978-3-030-38445-
6_9.
22
[70] S. Hochreiter, J. Schmidhuber, Long Short-Term Memory, Neural Comput. 9 (8)
(1997) 1735–1780, http://dx.doi.org/10.1162/neco.1997.9.8.1735.

[71] Y. LeCun, Y. Bengio, et al., Convolutional networks for images, speech, and time
series, Handb. Brain Theory Neural Netw. 3361 (10) (1995) 1995.

[72] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn, D. Yu, Convolu-
tional neural networks for speech recognition, IEEE ACM Trans. Audio Speech
Lang. Process. 22 (10) (2014) 1533–1545, http://dx.doi.org/10.1109/TASLP.
2014.2339736.

[73] B. Zhao, H. Lu, S. Chen, J. Liu, D. Wu, Convolutional neural networks for
time series classification, J. Syst. Eng. Electron. 28 (1) (2017) 162–169, http:
//dx.doi.org/10.21629/JSEE.2017.01.18.

[74] V. Pasquadibisceglie, A. Appice, G. Castellano, D. Malerba, G. Modugno, OR-
ANGE: outcome-oriented predictive process monitoring based on image encoding
and CNNs, IEEE Access 8 (2020) 184073–184086, http://dx.doi.org/10.1109/
ACCESS.2020.3029323.

[75] D. Scherer, A. Müller, S. Behnke, Evaluation of pooling operations in convo-
lutional architectures for object recognition, in: International Conference on
Artificial Neural Networks, Springer, 2010, pp. 92–101, http://dx.doi.org/10.
1007/978-3-642-15825-4_10.

[76] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp.
1–9, http://dx.doi.org/10.1109/CVPR.2015.7298594.

[77] A. Sharma, E. Vans, D. Shigemizu, K.A. Boroevich, T. Tsunoda, DeepInsight:
A methodology to transform a non-image data to an image for convolution
neural network architecture, Sci. Rep. 9 (1) (2019) 1–7, http://dx.doi.org/10.
1038/s41598-019-47765-6.

[78] P. Philipp, R. Jacob, S. Robert, J. Beyerer, Predictive analysis of business pro-
cesses using neural networks with attention mechanism, in: 2020 International
Conference on Artificial Intelligence in Information and Communication, ICAIIC,
2020, pp. 225–230, http://dx.doi.org/10.1109/ICAIIC48513.2020.9065057.

[79] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L.u.
Kaiser, I. Polosukhin, Attention is all you need, in: I. Guyon, U.V. Luxburg, S.
Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.), in: Advances
in Neural Information Processing Systems, vol. 30, Curran Associates, Inc., 2017.

[80] J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, D.D. Cox, Hyperopt: a python li-
brary for model selection and hyperparameter optimization, Comput. Sci. Discov.
8 (1) (2015) 014008, http://dx.doi.org/10.1088/1749-4699/8/1/014008.

[81] B. van Dongen, BPI Challenge 2012, Eindhoven University of Technology, 2012,
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.

[82] J. Buijs, Environmental Permit Application Process (‘WABO’), CoSeLoG Project,
Eindhoven University of Technology, 2014, http://dx.doi.org/10.4121/uuid:
c399c768-d995-4086-adda-c0bc72ad02bc.

[83] W. Steeman, BPI challenge 2013, 2013, http://dx.doi.org/10.4121/uuid:
a7ce5c55-03a7-4583-b855-98b86e1a2b07.

[84] B. van Dongen, BPI challenge 2017 - offer log, 2017, http://dx.doi.org/10.4121/
12705737.v2.

[85] B. van Dongen, BPI challenge 2020, 2020, http://dx.doi.org/10.4121/uuid:
52fb97d4-4588-43c9-9d04-3604d4613b51.

[86] F. Wilcoxon, Individual comparisons by ranking methods, Biom. Bull. 1 (1945)
80–83, http://dx.doi.org/10.1007/978-1-4612-4380-9_16.

http://dx.doi.org/10.1109/TSC.2021.3139807
http://dx.doi.org/10.1007/978-3-030-72693-5_9
http://dx.doi.org/10.1016/j.engappai.2024.108295
http://dx.doi.org/10.1016/j.engappai.2024.108295
http://dx.doi.org/10.1016/j.engappai.2024.108295
http://dx.doi.org/10.1016/j.dss.2017.04.003
http://dx.doi.org/10.1016/j.dss.2017.04.003
http://dx.doi.org/10.1016/j.dss.2017.04.003
http://dx.doi.org/10.1137/1.9781611975673.14
http://dx.doi.org/10.1137/1.9781611975673.14
http://dx.doi.org/10.1137/1.9781611975673.14
http://dx.doi.org/10.1109/TSC.2021.3051771
http://dx.doi.org/10.1016/j.knosys.2022.108773
http://dx.doi.org/10.1016/j.knosys.2022.108773
http://dx.doi.org/10.1016/j.knosys.2022.108773
http://dx.doi.org/10.1007/s12599-018-0551-3
http://dx.doi.org/10.1109/ICPM.2019.00028
http://dx.doi.org/10.1109/ICPM.2019.00028
http://dx.doi.org/10.1109/ICPM.2019.00028
http://dx.doi.org/10.1007/978-3-030-58638-6_11
http://dx.doi.org/10.1007/978-3-030-58638-6_11
http://dx.doi.org/10.1007/978-3-030-58638-6_11
http://dx.doi.org/10.1007/978-3-030-35166-3_25
http://dx.doi.org/10.1007/978-3-030-35166-3_25
http://dx.doi.org/10.1007/978-3-030-35166-3_25
http://dx.doi.org/10.1007/978-3-030-58666-9_14
http://dx.doi.org/10.48550/arXiv.2104.00721
http://dx.doi.org/10.48550/arXiv.2104.00721
http://dx.doi.org/10.48550/arXiv.2104.00721
http://arxiv.org/abs/2104.00721
http://dx.doi.org/10.1007/978-3-030-98581-3_9
http://dx.doi.org/10.1007/978-3-030-98581-3_9
http://dx.doi.org/10.1007/978-3-030-98581-3_9
http://dx.doi.org/10.1007/978-3-030-38445-6_9
http://dx.doi.org/10.1007/978-3-030-38445-6_9
http://dx.doi.org/10.1007/978-3-030-38445-6_9
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://refhub.elsevier.com/S0950-7051(25)00590-8/sb71
http://refhub.elsevier.com/S0950-7051(25)00590-8/sb71
http://refhub.elsevier.com/S0950-7051(25)00590-8/sb71
http://dx.doi.org/10.1109/TASLP.2014.2339736
http://dx.doi.org/10.1109/TASLP.2014.2339736
http://dx.doi.org/10.1109/TASLP.2014.2339736
http://dx.doi.org/10.21629/JSEE.2017.01.18
http://dx.doi.org/10.21629/JSEE.2017.01.18
http://dx.doi.org/10.21629/JSEE.2017.01.18
http://dx.doi.org/10.1109/ACCESS.2020.3029323
http://dx.doi.org/10.1109/ACCESS.2020.3029323
http://dx.doi.org/10.1109/ACCESS.2020.3029323
http://dx.doi.org/10.1007/978-3-642-15825-4_10
http://dx.doi.org/10.1007/978-3-642-15825-4_10
http://dx.doi.org/10.1007/978-3-642-15825-4_10
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1038/s41598-019-47765-6
http://dx.doi.org/10.1038/s41598-019-47765-6
http://dx.doi.org/10.1038/s41598-019-47765-6
http://dx.doi.org/10.1109/ICAIIC48513.2020.9065057
http://refhub.elsevier.com/S0950-7051(25)00590-8/sb79
http://refhub.elsevier.com/S0950-7051(25)00590-8/sb79
http://refhub.elsevier.com/S0950-7051(25)00590-8/sb79
http://refhub.elsevier.com/S0950-7051(25)00590-8/sb79
http://refhub.elsevier.com/S0950-7051(25)00590-8/sb79
http://refhub.elsevier.com/S0950-7051(25)00590-8/sb79
http://refhub.elsevier.com/S0950-7051(25)00590-8/sb79
http://dx.doi.org/10.1088/1749-4699/8/1/014008
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:c399c768-d995-4086-adda-c0bc72ad02bc
http://dx.doi.org/10.4121/uuid:c399c768-d995-4086-adda-c0bc72ad02bc
http://dx.doi.org/10.4121/uuid:c399c768-d995-4086-adda-c0bc72ad02bc
http://dx.doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07
http://dx.doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07
http://dx.doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07
http://dx.doi.org/10.4121/12705737.v2
http://dx.doi.org/10.4121/12705737.v2
http://dx.doi.org/10.4121/12705737.v2
http://dx.doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
http://dx.doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
http://dx.doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
http://dx.doi.org/10.1007/978-1-4612-4380-9_16

	Positional trace encoding for next activity prediction in event logs
	Introduction
	Background and Motivation
	Next Activity Prediction

	Preliminary notions
	Method
	Data representation
	The OREO models

	Experiments
	Models implementation and optimization
	Event logs
	Experimental setting
	Effect of the sliding window size
	Comparison with state-of-the-art approaches

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

