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 A B S T R A C T

The analysis of log data, generated by running processes in many application domains, enables organizations to 
identify opportunities for operational improvements. For instance, in healthcare, analyzing patient treatment 
logs can optimize care pathways; in manufacturing, production line logs can reveal bottlenecks; and in customer 
service, ticket resolution logs can streamline response protocols. One key analytical task is predicting the 
next activity in a process, which supports operational decision-making through better resource allocation and 
proactive response to customer needs. In this paper, we solve the next activity prediction task by exploiting 
a novel positional encoding approach that is based on sliding windows. This approach allows us to consider 
both a way to adapt to changes in the data distribution, and exploit positional information of the activities 
in the traces. The method proposed in this paper, called OREO, takes into account these aspects through a 
positional encoding tightly coupled with specific types of deep neural network architectures. The results on 
eight real-world process logs show the superiority of the models exploiting OREO encoding over state-of-the-art 
approaches, confirming our initial intuition of benefits gained by combining a time-window based model with 
positional information.
1. Introduction

Nowadays, more and more companies are becoming aware of the 
benefits of analyzing their internal process data to optimize their 
procedural processes. As a consequence, they continuously collect data 
in the form of event logs through information systems [1]. A log may 
contain a variety of processes, for instance: a user who is withdrawing 
cash from an ATM, a call center operator answering a call and solving a 
problem raised by a customer, or a user browsing the Internet. For each 
of these processes, the specific activities performed are tracked. The aim 
is to exploit the saved data in a meaningful way and shape the processes 
themselves [2]. In this context process mining has emerged as a research 
area between business process management and data mining, attracting 
attention from research and practice.

Process mining includes three main activities, namely: Process Dis-
covery, Conformance Checking, and Process Enhancement. Following 
an unsupervised approach, Process Discovery aims to mimic the process 
model by analyzing the given event log. The idea behind this task is to 
generalize the log data to create a model that can explain and simulate 
the executed processes. On the other hand, Conformance Checking is 
performed in a supervised setting. Here the inputs are an already known 
process model (the reference process model) and the observed event 
log. The goal is to identify discrepancies between the analyzed model 
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and the underlying event log. Finally, Process Enhancement tries to 
improve an existing process model using information about the actual 
processes recorded in an event log.

In addition to the aforementioned activities, Operational Support
is becoming increasingly important, due to its ability to automati-
cally make decisions while the processes are running, in an online
fashion. Thus, given a partial trace representing the current process 
execution, it automatically detects deviations (Detect), predicts the 
remaining processing time for the running activity (Predict) or recom-
mends the resource to be allocated, in order to complete an activity 
(Recommend) [3]. Researchers are paying particular attention to the 
prediction tasks (a.k.a. Predictive Process Monitoring — PPM), like the 
prediction of the following activity to be executed, which may assist 
in resolving long-standing problems such as the allocation of human 
resources or the decision on the specific actions to take [4]. Neverthe-
less, Predictive Process Monitoring is not limited only to those tasks; 
indeed, it aims to precisely forecast a process performance measure in 
the future. Fig.  1 shows a graphical representation of a PPM task. We 
can distinguish two fundamental moments in the task: the prediction 
moment and the predicted moment. The prediction moment is the 
instant in the present time when we decide to make a prediction. The 
predicted moment refers to the subject of the prediction. A prediction 
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Fig. 1. Predictive process monitoring task pipeline.
is thus dependent on the predictor’s memory, which is derived from the 
knowledge of the process execution history up to the prediction point.

In order to properly take into account the execution history of the 
process to which the prediction should apply, the predictor’s memory 
should be properly represented. This representation should, in addition, 
be coherent with the representation used in the learning phase, in order 
to make the predictor actionable. In this perspective, raw traces cannot 
be exploited to directly train PPM models since they need a preliminary 
encoding phase that is able to encapsulate the predictor’s memory. 
This encoding should be able to (i) transform the trace into a feature-
vector representation, which can be directly used by common machine 
learning algorithms, and (ii) extract hidden but precious information 
about the activities in the trace, including temporal patterns. The trace 
encoding method, typically used in the literature to deal with the se-
quence of activities inside a trace, is the one hot encoding. It is usually 
applied on increasing sequences of activity called prefix traces [5,6]. 
However, the obtained feature vectors may fail to capture temporal 
patterns, which may exist between activities inside a trace or among 
traces [5,7]. These kinds of patterns are essential since they model the 
temporal sequence, according to which activities are performed, and 
cannot be ignored when training models that should be able to consider 
how activities influence the execution of a running trace.

This paper proposes OREO (pOsitional tRace EncOding), a novel 
positional-based trace encoding method capable of grasping local tem-
poral patterns inside a partial trace, by exploiting a sliding window 
model. The use of sliding windows, typically adopted in stream data 
mining, limits the analysis to the last significant activities, allowing 
OREO to properly represent only the full sliding window and possible 
local temporal patterns it should contain. Thus, OREO overcomes the 
limitation of simple prefix trace encoding methods, creating a robust 
representation that intrinsically selects the most relevant features that 
could be effectively exploited to train a predictive model for a running 
process and for considering the control-flow perspective. More specif-
ically, we adopt a positional encoding so it is possible to represent 
which activity took place in which position of the trace, but only 
focusing on the sliding window. It is well-known that trace encoding 
is a critical step in process mining. Usually trace encoding approaches 
consider multiple perspectives (i.e. control flow, elapsed time, allocated 
resources) and summarize them in a single significant representation, 
creating a new feature space [8]. Thus, choosing the correct views to 
include in an encoding could significantly influence the successfulness 
of the process mining task, boosting the performance of the trained 
models and avoiding the creation of complex separation boundaries, 
which could prevent the correct classification of traces and activities [9,
10]. Moreover, it is well recognized that the time window model is very 
robust to capture the concept drift phenomenon, according to which the 
data distribution may change over time [11]. This aspect, translated 
in process mining, means that in a trace the next activities are more 
related to the most recent activities than activities carried out in the 
more distant past.

The main contributions of this paper are therefore the following:

• We present a detailed state-of-the-art analysis of the trace encod-
ing methods and next activity prediction challenge;
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• We propose a novel positional trace encoding method;
• We employ the trace encoding method for next activity predic-
tion, using five different deep learning models;

• We provide an extensive empirical evaluation of our method, 
including a thorough comparison with several state-of-the-art 
methods.

The rest of the paper is structured as follows: Section 2 summarizes 
the state of the art related to the next activity prediction, focusing 
on the chosen representation for the traces. Section 3 introduces the 
preliminary notions to examine the problem. Then Section 4 describes 
the proposed method, while Section 5 illustrates the experimental 
setup and the obtained results. Finally, in Section 6 we draw some 
conclusions and define some future goals.

2. Background and motivation

Predictive Process Monitoring (PPM) has emerged as a crucial tech-
nology in both academic research and industry applications, demon-
strating significant impact across various business domains [12–14]. 
Its economic implications are substantial, with documented benefits in 
operational efficiency, cost reduction, and competitive advantage [15]. 
Indeed, monitoring business processes and predicting their future be-
havior can allow managers to behave proactively before events oc-
cur [16].

Among the various PPM tasks, this paper focuses on next activity 
prediction, which aims to predict the next activity to be executed in 
a running process. This is one of the most researched classification 
tasks in PPM [17], with several important use cases: (1) Resource 
allocation, in which resources have to be distributed in advance based 
on anticipated future activities [18]; (2) Best action recommendation, 
in which based on the critical performance metrics that the business 
wants to maximize, the next best actions have to be identified [19]; 3) 
Early warning, that monitors the next most probable activity to detect 
wastes, threats, errors, or difficulties in advance [20]; 4) Anomaly 
detection, in which abnormal process instances are detected by looking 
at the probability distribution of the next activity predictions [21].

However, PPM encompasses a broader range of predictive tasks. In-
deed, classification approaches can also address risk prediction [22,23], 
agreement violation prediction [24,25], and outcome prediction [26,
27]. Furthermore, PPM techniques can target continuous domains 
through regression-based approaches [17]. For example, in [28], the 
authors use and expand existing process mining approaches to provide 
a framework to analyze and forecast manufacturing costs. Several 
regression-based approaches aim to predict the time taken to complete 
a case, which is essential when dealing with service level agreement 
constraints [29–31]. In [32] the remaining time prediction for running 
cases is generated after a transition system is created and annotated. 
Similarly, Polato et al. [33] exploit both the control flow perspective 
and the data flow perspective to improve the prediction quality. These 
authors use the event log to create a transition system, which they 
subsequently annotate using Na"ive Bayes and Support Vector Regression
models. These models are exploited to forecast the remaining time from 
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the next state and the probability of transition from one state to the 
next, respectively. Ceci et al. [34] rely on sequence trees for predicting 
the completion time. This approach naturally exploits the control-flow 
perspective and intrinsically allows the clustering of traces showing 
similar activities. Then a regressor, useful to predict the remaining time, 
is trained for each node in the built sequence trees. Other examples of 
work aiming to predict the remaining cycle time of a process instance 
can be seen in [5,35–37].

Another crucial aspect for PPM algorithms is how to represent traces 
(sequences of activities) in a format suitable for machine learning 
algorithms. A trace encoding strategy must be able to capture both the 
sequential nature of the process and the relationships between activi-
ties, while transforming categorical activity information into numerical 
features that can be processed by predictive models [38]. In the liter-
ature, several methods for encoding traces are available, ranging from 
classic one-hot encoding [5] to word embeddings [39], representational 
learning [40], and encoding approaches that take into account specific 
trace information, such as the experience of the resource performing an 
activity [41].

Apart from the classical offline scenario, where a model is trained 
on historical batches of logs that usually capture the complete course 
of cases, PPM (and in general, process mining) algorithms have also 
been applied in the online scenario, where a stream of events is 
analyzed [42]. In this context, models can be retrained from scratch 
or fine-tuned as new instances from the stream are acquired and 
analyzed [43]. However, this online setting introduces specific chal-
lenges, most notably the presence of concept drift, where the statistical 
properties of the target variable change over time in unexpected ways. 
This phenomenon can affect the performance of predictive models, as 
the patterns learned from historical data can become less relevant or 
entirely obsolete to make predictions on current cases [44]. An example 
of handling these challenges is the work of Pasquadibisceglie et al. [45], 
which takes advantage of the fine-tuning of deep learning models along 
with adaptive windowing mechanisms to detect and handle concept 
drifts in a stream of events.

Given the main focus of this paper on the next activity prediction 
task, we now review the main approaches proposed in the literature to 
address this task. 

2.1. Next activity prediction

In the literature, multiple approaches have been proposed to solve 
this complex but practical PPM task,  ranging from traditional meth-
ods to neural network-based solutions. Among traditional approaches, 
automata and state-based models have played a foundational role. 
Breuker et al. [46] introduced RegPFA, a predictive model based 
on grammatical inference theory and Probabilistic Finite Automatons 
(PFA). When tested on the BPI2012 and BPI2013 datasets, RegPFA 
achieved accuracies between 60%–80%. Following a similar approach, 
Becker et al. [47] also leveraged PFA, developing a model where states 
are determined by their previous state and the occurred events. Le 
et al. [48] extended this line of research using Hidden Markov Models, 
proposing a Hybrid Markov Model that combines higher-order Markov 
Models with sequence alignment to match unseen traces with similar 
known sequences.

Another stream of research focuses on tree-based approaches. Lak-
shmanan et al. [49] used decision trees to predict next events based 
on context data from semi-structured business processes, while Rozinat 
et al. [50] applied them to trace-level features. Taking a different 
perspective on tree structures, Ceci et al. [51] combined pattern mining 
with nested model learning, arranging prediction models in a tree 
structure for frequent activity sequences. Their framework remains 
algorithm-agnostic, allowing the use of any classification method. In a 
subsequent work, Ceci et al. [52] extended their research to parallel 
activities through Parallact, a distributed framework using density-
based clustering and multi-target classification. Departing from these 
3 
approaches, Ferilli et al. [53] explored declarative process mining, 
using first-order logic reasoning for next activity prediction.

The aforementioned approaches exhibit three significant limitations 
in their methodological frameworks. First, they do not incorporate 
temporal window modeling, thus failing to account for the differential 
impact of recent versus historical activities on subsequent process 
behavior. Second, these approaches generally lack proper implementa-
tion of positional encoding mechanisms. This limitation is particularly 
notable as positional encoding enables the representation of total or-
dering of actions within a trace, capturing the precise sequence of 
activities, rather than merely representing partial ordering (that is, 
precedes/follows relationships) or the binary presence or absence of 
activities. Third, these methods typically do not account for the tempo-
ral dimension encoded in activity timestamps, despite its demonstrated 
significance in process behavior prediction [54]. 

Following their remarkable success in various predictive tasks across 
different domains, neural networks have emerged as a predominant 
methodology in next activity prediction, becoming one of the most 
widely used approaches [55]. Among neural architectures, Recurrent 
Neural Networks (RNNs), and particularly Long Short-Term Memory 
(LSTM) networks, have been widely adopted due to their natural ability 
to process sequential data and capture temporal dependencies [56,57]. 
One of the pioneering works in this direction was proposed by Tax 
et al. [5], who developed a three-layer LSTM architecture predicting 
both next activities and their timing. Their model used one-hot encod-
ing with additional temporal features, though this encoding approach 
showed limitations with increasing numbers of activities [54]. Sub-
sequently, Evermann et al. [58] enhanced LSTM-based prediction by 
introducing an embedding layer, similar to word embeddings, which 
mapped each input to an n-dimensional vector and incorporated ad-
ditional event attributes. Building on this, Lin et al. [59] proposed 
MM-Pred, an encoder–decoder architecture using LSTM for direct at-
tribute transformation. However, both approaches overlooked temporal 
windows and treated all activities equally regardless of their timeline 
position. Addressing these limitations, Camargo et al. [54], advanced 
LSTM application by incorporating timestamps and pre-trained em-
beddings combining activity and resource encoding. Pasquadibisceglie 
et al. [60] further developed this direction through multi-view learning, 
using separate embedding layers for different categorical attributes 
before concatenation with non-categorical features.

Recent LSTM applications have addressed the inherent black-box
nature of these models by incorporating interpretable methods. No-
tably, Wickramanayake et al. [61] proposed two different types of 
attention mechanisms coupled with a classical LSTM model, demon-
strating that high accuracy can be achieved while maintaining model 
interpretability.

Beyond LSTM architectures, Mehdiyev et al. [62] introduced a 
sophisticated embedding strategy encompassing multiple process per-
spectives. Their approach combines n-gram representation with feature 
hashing across various event attributes, utilizing a deep-stacked au-
toencoder for hierarchical feature representation before final prediction 
through a feedforward neural network.

A parallel line of research explored Convolutional Neural Networks 
(CNNs). Pasquadibisceglie et al. [63] exploited accumulated one-hot 
encodings obtained from the executed activities, along with the number 
of days that have passed from the current event and the first event in a 
process instance, to generate artificial two-channel images. A multi-level 
CNN then analyzes these images and generates the predictions. Their 
subsequent work [64] arranged features linearly in RGB images, while 
Di Mauro et al. [65] combined embedding layers with stacked CNN 
inception modules.

Finally, several other deep neural architectures have been success-
fully applied to next activity prediction, including Generative Adver-
sarial Networks (GANs) [66], transformers [67], and Graph Neural 
Networks (GNNs) [68].



A. Pellicani and M. Ceci Knowledge-Based Systems 319 (2025) 113544 
Table 1
Example of two traces taken from the event log BPI 2017 Offer. (See Section 5.2 for details of this event 
log).
 Trace Event CaseID Activity Timestamp  
 1 𝑒1 Offer_247135719 Create Offer 2016/01/02 10:17:05 
 𝑒2 Offer_247135719 Created 2016/01/02 10:17:08 
 𝑒3 Offer_247135719 Sent (online only) 2016/01/02 10:19:21 
 𝑒4 Offer_247135719 Cancelled 2016/01/02 10:21:26 
 2 𝑒5 Offer_1365106765 Create Offer 2016/01/02 10:55:46 
 𝑒6 Offer_1365106765 Created 2016/01/02 10:55:47 
 𝑒7 Offer_1365106765 Sent (mail and online) 2016/01/02 10:59:50 
 𝑒8 Offer_1365106765 Returned 2016/01/08 11:00:24 
 𝑒9 Offer_1365106765 Accepted 2016/01/11 10:42:07 
Fig. 2. The steps of OREO encoding.
Despite incorporating temporal information, these methods fail to 
fully capture the dynamic nature of process execution, as they do 
not exploit the time-window approach. This approach overcomes the 
fundamental limitations of simple prefix trace encoding by intelli-
gently identifying and leveraging the most relevant features for predic-
tion in running processes. Moreover, as detailed in Section 4, OREO 
provides an additional key advantage: its encoding strategy is com-
pletely architecture-agnostic, enabling seamless integration with var-
ious neural networks including CNNs, LSTMs, and transformer-based 
models. 

3. Preliminary notions

In this section we adapt the definitions provided by van der Aalst [2] 
for Predictive Process Monitoring to formally define the next activity 
prediction problem.

Given the set of activities  and the set of case identifiers  we 
define the concept of event, trace and event log. 

Definition 1 (Event). An event 𝑒𝑖 = (𝑎𝑖, 𝑐𝑖, 𝑡𝑖) ∈  is a triple, where 
𝑎 ∈ , 𝑐 ∈ , 𝑡  is the timestamp and  is the set of all possible events.
𝑖 𝑖 𝑖
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Therefore, given the event 𝑒𝑖, it is possible to define three utility 
functions: 𝜋(𝑒𝑖) = 𝑎𝑖, 𝜋 (𝑒𝑖) = 𝑐𝑖, and 𝜋 (𝑒𝑖) = 𝑡𝑖, which return the 
activity, the case identifier and the timestamp associated to an event, 
respectively.

Definition 2 (Trace). A trace is the finite sequence of events 𝜎 =
⟨𝑒1, 𝑒2,… , 𝑒𝑛⟩, having 𝑒𝑖 ∈  , 𝜋 (𝑒𝑖) ≤ 𝜋 (𝑒𝑖+1) and 𝜋 (𝑒𝑖) = 𝜋 (𝑒𝑖+1)
for 1 ≤ 𝑖 ≤ 𝑛 − 1.

A trace is therefore the abstraction of a completed process, where 
we can identify a total ordering among the composing events. More-
over, we can further abstract the previously defined utility functions to 
work on traces. Thus, given a trace 𝜎𝑖 composed of 𝑛 events, 𝜋(𝜎𝑖) =
⟨𝑎𝑖1,… , 𝑎𝑖𝑛⟩ and 𝜋 (𝜎𝑖) = ⟨𝑡𝑖1,… , 𝑡𝑖𝑛⟩ are the functions returning se-
quences of activities and timestamps related to the trace 𝜎𝑖. Finally, 
a collection of traces defines an event log. 

Definition 3 (Event Log). An event log  = (𝜎1,… , 𝜎
||) is a set of traces, 

where ∀ (𝜎𝑖, 𝜎𝑗 ) ∈ , 𝑖 ≠ 𝑗. We have that 𝜎𝑖 ∩ 𝜎𝑗 = ∅.

An example of an event log taken from the BPI 2017 Offer Dataset 
can be found in Table  1. This paper aims to extract valuable knowledge 
from event logs, in order to perform the next activity prediction task, 
defined as:
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Table 2
Example of traces from BPI 2017 Offer log after the 
sequence set extraction phase using a sliding window 
of size 𝑘 = 3.
 

∗ =

𝜎1 1 →
⟨𝑒1 , 𝑒2 , 𝑒3⟩ 

 ⟨𝑒2 , 𝑒3 , 𝑒4⟩ 
 

𝜎2 2 →

⟨𝑒5 , 𝑒6 , 𝑒7⟩ 
 ⟨𝑒6 , 𝑒7 , 𝑒8⟩ 
 ⟨𝑒7 , 𝑒8 , 𝑒9⟩ 

Definition 4 (Next Activity). Given a time instant 𝑡 and a (partial) 
trace 𝜎 of length 𝑘, that is 𝜎 = (𝑒1,… , 𝑒𝑘), the next activity of 𝜎 is 
𝜋(𝑛𝑒𝑥𝑡(𝜎)) = 𝑒𝑘+1.

4. Method

In the following subsections we describe the event log represen-
tation, which leads to the proposed encoding method. Then we give 
some insights into the deep neural network models that we use for the 
encoded logs and to solve the next activity prediction task.

4.1. Data representation

The event logs that indicate the execution of activities in a business 
process are the starting point for predictive process monitoring. As 
stated in Section 3, events from the same process can be chronologi-
cally (totally) ordered into traces, allowing us to analyze the process 
execution while it is still running. However, current machine learning 
and deep learning state-of-the-art techniques cannot directly grasp 
useful information from the raw traces, like that obtained by directly 
considering the activity position in the trace or the relation among 
the execution times of the single activities. Thus, encoding techniques 
able to extract feature vectors from traces are needed before training a 
predictive process monitoring model [69].

Formally, a trace encoder is a function 𝑓 ∶  → 1 × ⋯ × 𝑟 that 
maps any (complete/partial) trace 𝜎 to an 𝑟-dimensional feature vector 
1 × ⋯ × 𝑟, with 𝑖 ⊆ R, 1 ≤ 𝑖 ≤ 𝑟. A variety of viewpoints could 
be synthesized by the 𝑟 extracted features. For example, traditional 
encoding usually relies on the control-flow perspective, focusing on the 
activities performed during the trace execution and their order. Other 
encodings further analyze the categorical and numerical attributes that 
come with a trace, i.e., deepening the time perspective or the resource 
perspective [9].

On the contrary, this work proposes a representation that focuses on 
the time and control-flow perspective, creating a positional encoding 
that could be exploited in many predictive process monitoring tasks 
(not only for next activity prediction). To obtain the encoding function, 
three phases are performed in OREO: (i) sequence set extraction, (ii) 
sequence set transformation, (iii) tensor encoding.

Fig.  2 provides an abstract representation of the three phases and 
their operations, while Algorithm 43 presents the corresponding pseu-
docode. Each phase transforms the original log, encoding the temporal 
and sequential relationships among the activities in the traces.

In particular, in the sequence set extraction phase, each trace 𝜎𝑖 from 
the log  is analyzed to generate a sequence set 𝑖. This set contains 
the sequences of events obtained by applying a sliding window of 
dimension 𝑘 to the original trace. 

𝑖 = {⟨𝑒𝑖𝑗 ,… , 𝑒𝑖𝑗+𝑘−1⟩ ∣ 0 < 𝑗 ≤ |𝜎𝑖| − 𝑘 + 1, 0 ≤ 𝑖 < ||}, (1)

where 𝑒𝑖𝑗 is the 𝑗th event belonging to the 𝑖th trace in the event log. Note 
that the number of sequences in each set 𝑖 depends on the length of 
the original trace 𝜎𝑖: a trace of length 𝑛 will generate 𝑛−𝑘+1 sequences. 
Each of these sequences can be seen as a partial traces. Hence, all the 
utility functions defined in Section 3 can be applied. In addition, we 
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Algorithm 1: OREO Encoding
Input: Event log , window size 𝑘
Output: Encoded log 𝐿
/* Phase 1: Sequence Set Extraction  */

1 ∗ ← ∅;
2 foreach trace 𝜎𝑖 ∈  do
3 𝑖 ← ∅;
4 for 𝑗 ← 1 to |𝜎𝑖| − 𝑘 + 1 do
5 sequence ← ⟨𝑒𝑖𝑗 , ..., 𝑒

𝑖
𝑗+𝑘−1⟩;

6 𝑖 ← 𝑖 ∪ {sequence};
7 end 
8 ∗ ← ∗ ∪ 𝑖;
9 end 
/* Phase 2: Sequence Set Transformation  */

10 ∗
𝐴 ← ∅;

11 𝐴 ← get_unique_activities();
12 foreach  ∈ ∗ do
13 𝐴 ← 𝜋();
14 ∗

𝐴 ← ∗
𝐴 ∪ {𝐴};

15 end 
16  ← zeros(𝑘, |𝐴|, |∗

𝐴|);
17 for 𝑖 ← 1 to |∗

𝐴| do
18 𝑀𝐴

← zeros(𝑘, |𝐴|);
19 𝐴 ← ∗

𝐴[𝑖];
20 for 𝑝 ← 1 to 𝑘 do
21 𝑀𝐴

[𝑝] ← one_hot_encode(𝐴[𝑝], 𝐴);
22 end 
23 [∶, ∶, 𝑖] ← 𝑀𝐴

;
24 end 

/* Phase 3: Tensor Encoding  */
25 𝐿 ← zeros(|∗

𝐴|, |𝐿𝑝| + 𝑘);
/* Set positional features (first |𝐿𝑝| columns)  */

26 𝑐𝑜𝑙 ← 1;
27 for 𝑤𝑝 ← 1 to 𝑘 do
28 foreach 𝑎𝑗 ∈ 𝐴 do
29 for 𝑖 ← 1 to |∗

𝐴| do
30 𝐿[𝑖, 𝑐𝑜𝑙] ← (𝑤𝑝 ,𝑎𝑗 ,𝑖);
31 end 
32 𝑐𝑜𝑙 ← 𝑐𝑜𝑙 + 1;
33 end 
34 end 

/* Set temporal features (last k columns)  */
35 for 𝑖 ← 1 to |∗

𝐴| do
36 for 𝑤𝑝 ← 1 to 𝑘 do
37 𝜎𝑜𝑟𝑖𝑔 ← get_original_trace(∗

𝐴[𝑖]);
38 𝑡𝑠𝑡𝑎𝑟𝑡 ← get_first_activity_time(𝜎𝑜𝑟𝑖𝑔);
39 𝑡𝑐𝑢𝑟𝑟 ← get_activity_time_at_position(𝜎𝑜𝑟𝑖𝑔 , 𝑤𝑝);
40 𝐿[𝑖, |𝐿𝑝| +𝑤𝑝] ← 𝑡𝑐𝑢𝑟𝑟 − 𝑡𝑠𝑡𝑎𝑟𝑡;
41 end 
42 end 
43 return 𝐿

can define the superset ∗, containing all the sequence sets extracted 
from the event log . 

∗ =
||
⋃

𝑖=1
𝑖 (2)

In this phase, the choice of the sliding window dimension 𝑘 determines 
the algorithm’s forgetting level. Indeed, a low value of 𝑘 will emphasize 
recently executed events, forgetting the older ones. Otherwise, a higher 
𝑘 value will allow the algorithm to reason on far-in-time events, with-
out considering a possible concept drift in the log. Table  2 shows an 
example of sequence set extraction starting from the partial log shown 
in Table  1  (in the example we use a sliding window of size 𝑘 = 3). In the 
example ∗ contains five sequences, two of which have been extracted 
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Fig. 3. An example of LSTM cell.
from 1 (containing events from 𝜎1), while the other three come from 
2 (with the events extracted from 𝜎2). This difference in the number 
of sequences is due to the lengths of the traces: 𝜎1 has length 4, thus 
generating |1| = |𝜎1| − 𝑘 + 1 = 4 − 3 + 1 = 2 sequences, while 𝜎2 has 
length 5, resulting in |2| = |𝜎2| − 𝑘 + 1 = 5 − 3 + 1 = 3 sequences. 
It is noteworthy that the term forgetting level does not mean that old 
activities in the trace are discarded and not used in the training phase: 
they are still used but the models cannot use them as direct descriptive 
properties for the next activity prediction task.

The second phase, sequence set transformation, aims to transform the 
superset ∗ into a three-dimensional tensor. Thanks to this tensor, the 
partial traces extracted in the first phase are aligned based on their 
position in the window. Consequently, inter-trace relationships among 
the activities could be captured and exploited during the learning 
phase.

In order to build the tensor, several steps have to be performed. 
First, the executed activities are extracted for each sequence in ∗, 
exploiting the utility function 𝜋 and generating a new superset ∗

𝐴. 

∗
𝐴 = {𝜋() ∣ ∀ ∈ ∗} (3)

Then each activity sequence 𝐴 ⊆ ∗
𝐴 is further processed by creating 

a matrix 𝑀𝑆𝐴
∈ N𝑘×|𝐴|, where 𝑘 is the sliding window dimension, 

𝐴 is the set of distinct activities in the event log  and |𝐴| is the 
cardinality of this set. Each row of the 𝑀𝑆𝐴

 matrix will contain the 
one-hot encoding of each activity in 𝐴. Finally, the three-dimensional 
OREO tensor  ∈ N𝑘×|𝐴|×|∗

𝐴| is obtained by combining all the matrices 
created from the activity sequences in ∗

𝐴.
 now contains information on all partial traces, each aligned on 

the basis of its position in the sliding window. However, since the con-
struction of  includes transformation steps such as one-hot encoding, 
the tensor is very likely to be sparse, which can cause hampering of the 
learning effectiveness.

In the third phase, we perform tensor encoding to create a represen-
tation that reduces data sparsity, captures both positional and temporal 
patterns, and enables effective model learning. We define our feature 
set 𝐿 as the union of positional features 𝐿𝑝 and temporal features 𝐿𝑇 : 

𝐿 = 𝐿𝑝 ∪ 𝐿𝑇 , (4)

The positional features 𝐿𝑝 capture the occurrence of activities at 
specific positions within the sliding window: 

𝐿𝑝 = {𝑝
⟨𝑤𝑝 ,𝑎𝑗 ⟩

∣ 𝑤𝑝 ≤ 𝑘 ∧ 𝑎𝑗 ∈ 𝐴 ∧ ∃𝑖 = (1,… , |∗
𝐴|) ∶ (𝑤𝑝 ,𝑎𝑗 ,𝑖) = 1}

(5)

where 𝑝
⟨𝑤𝑝 ,𝑎𝑗 ⟩

 is a positional binary feature that, intuitively, represents 
the fact that activity 𝑎  is executed at position 𝑤  in a sliding window 
𝑗 𝑝

6 
of a trace (sequence). More specifically, each positional feature 𝑝
⟨𝑤𝑝 ,𝑎𝑗 ⟩

is characterized by two indices: 𝑤𝑝 representing the specific position 
within the sliding window (ranging from 1 to window size k), and 𝑎𝑗
representing a specific activity from the set of possible activities A. For 
example, feature 𝑝

⟨2,𝑎5⟩
 would indicate whether activity 𝑎5 appears in 

position 2 of the sliding window.
To complement the positional information, we introduce temporal 

features 𝐿𝑇 , which capture the timing aspects of activities: 
𝐿𝑇 = 𝑇

⟨𝑎𝑗 ⟩
∣ 𝑎𝑗 ∈ 𝐴, (6)

where 𝑇
⟨𝑎𝑗 ⟩

 represents the normalized time distance between the start 
of the trace and the moment activity 𝑎𝑗 is executed.

The final encoding creates a matrix with |𝑆∗
𝐴| rows and |𝐿𝑝| + 𝑘

columns, where each row 𝑥𝑖 represents a sliding window of a trace. 
The values in this matrix are determined as follows: 

𝑥𝑖,𝑙 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if 𝑙 ≤ |𝐿𝑝|, 𝑙 = 𝑝
⟨𝑤𝑝 ,𝑎𝑗 ⟩

𝑎𝑛𝑑 (𝑤𝑝 ,𝑗,𝑖) = 1

0, if 𝑙 ≤ |𝐿𝑝|, 𝑙 = 𝑝
⟨𝑤𝑝 ,𝑎𝑗 ⟩

𝑎𝑛𝑑 (𝑤𝑝 ,𝑗,𝑖) = 0

𝑡𝑖,𝑎𝑗 , if |𝐿𝑝| < 𝑙 ≤ |𝐿𝑝| + 𝑘, 𝑙 = 𝑇
⟨𝑎𝑗 ⟩

(7)

where 𝑡𝑖,𝑎𝑗  represents the time distance between the start of the trace 
and the execution of activity 𝑎𝑗 .

4.2. The OREO models

To demonstrate the versatility and effectiveness of our encoding, 
we evaluate it across multiple predictive architectures, which are di-
rectly inspired from existing state-of-the-art next activity prediction 
approaches. This allows us to directly evaluate the effectiveness of 
our encoding, when compared with such methods. Specifically: (i) 
OREO-LSTM builds upon the predictive architecture proposed by [60], 
incorporating their LSTM architecture; (ii) OREO-Image adopts the pre-
dictive architecture proposed by [63]; (iii) OREO-Inception adopts the 
predictive architecture proposed by [65]; and (iv) OREO-Transformer 
adopts the predictive architecture proposed by [67]. The goal is to learn 
a function 𝑓 which given an encoded partial trace 𝜎𝑒𝑛𝑐 at time 𝑡 returns 
the next activity 𝑎𝑡+1 to be executed in that trace, more formally: 

𝑓 (𝜎𝑒𝑛𝑐 ) → 𝑎𝑡+1 (8)

As its name suggests, the OREO-LSTM model is based on the well-
known Long Short-Term Memory (LSTM) [70], a particular Recurrent 
Neural Network (RNN) capable of grasping strong temporal dependences 
when dealing with sequence data. Unlike classical Multi-Layer Per-
ceptrons, where a layer is fully connected to the next without any 
cycle, LSTMs allow feedback loops to share parameters across the 
model and maintain a memory. Our model exploits two LSTM layers 
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entangled by two Batch Normalization layers to settle the learning 
process. The number of hidden units (LSTM cells) in the two LSTM layers 
is an adequately optimized hyperparameter (see Section 5.1 for further 
details). Basically, an LSTM cell incorporates three types of gates: input 
gate, forget gate and output gate, and can be described by the following 
equations:

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑
(

𝑊𝑓𝑥𝑡 + 𝑉𝑓ℎ𝑡−1 + 𝑏𝑓
)

, (9)

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑
(

𝑊𝑖𝑥𝑡 + 𝑉𝑖ℎ𝑡−1 + 𝑏𝑖
)

, (10)

𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡 × 𝑡𝑎𝑛ℎ
(

𝑊𝑐𝑥𝑡 + 𝑉𝑐ℎ𝑡−1 + 𝑏𝑐
)

, (11)

𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑
(

𝑊𝑜𝑥𝑡 + 𝑉𝑜ℎ𝑡−1 + 𝑏𝑜
)

, (12)

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ
(

𝐶𝑡
)

, (13)

where 𝑥𝑡 and ℎ𝑡 are the input and the hidden state at time step t, 
while 𝑊 , 𝑉 , and 𝑏 are trainable network parameters representing the 
weight matrices and the biases. The forget gate is described in Eq. (9). 
Specifically, the forget gate exploits the sigmoid function to combine 
the information from the previous hidden state and the current input, 
obtaining a value between 0 and 1. The closer this score is to 0, the less 
knowledge of the earlier steps is kept. Then the input gate (Eq. (10)) 
takes into account both the current input and the earlier hidden states, 
exploiting a sigmoid function. In this case, the output score between 
0 and 1 indicates the importance of the new information held by the 
input. At this point the network has sufficient information to calculate 
the new cell state (Eq. (11)), weighting the last state by the forget score 
and adding a scaled input value. Subsequently, the new hidden state ℎ𝑡
(Eq. (13)) is calculated by multiplying the output gate score (Eq. (12)) 
with the current cell state 𝐶𝑡, solely after applying the tanh activation 
function. Fig.  3 shows an example of LSTM cell, with all the interactions 
among the gates highlighted. In OREO-LSTM two LSTM layers are 
used (coherently with [5]), followed by a dense layer to compute the 
probabilities of each predictable class, i.e., the next activities which 
could be executed. Specifically, our dense layer exploits the softmax 
activation function to predict a class 𝑦𝑖: 

𝑦𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
exp(𝑧𝑖)

∑

||
𝑗=1 exp(𝑧𝑗 )

, (14)

where 𝑧𝑖 and 𝑧𝑗 are the values assumed by the 𝑖th and the 𝑗th output 
neuron in the final dense layer, respectively. The architecture of the 
OREO-LSTM model is shown in Fig.  4

Contrary to OREO-LSTM, OREO-Inception and OREO-Image cores 
are based on the Convolutional Neural Network architecture [71], a 
popular family of DNNs commonly used in computer vision, speech 
recognition [72] and time series analysis [73], which are specialized in 
processing data with a grid-like topology. Nevertheless, Convolutional 
Neural Networks have also proved their potentiality in the process 
mining field, showing stimulating results when employed for predicting 
the next activity that will be executed in a running trace [64,65] or the 
trace outcome [74]. The building block of a CNN is the convolutional 
layer, which comprises a group of filters having their own set of 
parameters that must be learned. The dimensions of the filters are 
smaller than those of the input. Each filter is convolved with the 
input to produce an activation map of neurons. Usually convolutional 
layers are coupled with pooling layers to reduce the output dimensions, 
while preserving the most critical information. This makes the network 
robust to slight differences in pattern positions in the input data, as 
happens in image processing tasks. Our CNN architectures rely on 
the global max pool operation, which provides the best results in the 
literature [75], combined with a dense layer. This dense layer is in 
charge of performing the classification through the softmax activation 
function (see Eq. (14)).

Nonetheless, traditional deep convolutional networks may suffer 
from overfitting and high computational costs. Attempts to reduce these 
problems rely on sparsely connected architectures. Moreover, classic 
hardware is better suited for the computation of dense matrices, making 
7 
Fig. 4. The OREO-LSTM model and its components.

it necessary to approximate the sparse structure of the networks. For 
the design of the architecture of OREO-Inception, we consider the 
well-known naïve inception module. Developed by Google for its state-
of-the-art CNN-classifier GoogleNet [76], the inception module creates 
wider neural networks instead of deeper ones, to avoid overfitting and 
decrease the computational cost. This result is achieved by combining 
one max pooling layer with three parallel convolution layers, having 
distinct filter sizes that simultaneously apply to the same input. Then 
a concatenation layer is used to juxtapose the outputs of all the former 
layers. OREO-Inception stacks two inception modules before perform-
ing a global max pooling. As usual, a final dense layer outputs the 
prediction. The architecture of the OREO-Inception model is shown in 
Fig.  5a.

On the other hand, OREO-Image is still based on classical CNNs, 
but relies on a 2D Convolution. Thus, an additional transformation 
phase is required to convert the encoded traces into an image-like 
matrix. This can easily be achieved by applying some well-established 
trace-to-image conversion techniques [64,74]. In particular, we use the 
DeepInsight method [77], which projects each encoded feature into 
a Cartesian plan, by applying a non-linear dimensionality reduction 
technique. The convex hull algorithm is then used to find the smallest 
rectangle containing all the features which define the transformed 
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Fig. 5. The CNN-based OREO models and their components. (a) OREO-Inception. (b) OREO-Image.
Fig. 6. An example of a bitmap obtained by applying DeepInsight to an OREO-encoded 
sequence, taken from the BPI Challenge 2020 — Request for Payment event log.

image’s border. Finally, each row of the encoded log is converted into 
an image (bitmap) by assigning feature values to the corresponding 
features’ Cartesian coordinates. Fig.  6 shows an example of a bitmap 
obtained by applying this technique when the t-SNE dimensionality 
reduction is used to generate the feature coordinates. To the best of 
the authors’ knowledge, this is the first time the DeepInsight encoding 
has been applied to the next activity prediction task, allowing the use of 
2d-CNNs, which are well known for their capability of extract complex 
patterns and relationships from image data. The OREO-Image neural 
network architecture is shown in Fig.  5b.

While CNN architectures have proven effective in capturing spa-
tial patterns in the encoded traces, recent advancements in sequence 
modeling have highlighted the potential of attention-based mecha-
nisms for process mining tasks [78]. The OREO-Transformer model 
leverages the Transformer architecture [79], which has revolutionized 
8 
natural language processing and sequence modeling tasks by introduc-
ing a mechanism that can effectively capture long-range dependencies 
in sequential data without recurring connections. Unlike LSTM and 
CNN-based approaches, Transformers rely entirely on the self-attention 
mechanism to model relationships between elements in a sequence. 
This mechanism allows the model to weigh the importance of different 
positions in the input sequence when computing a representation for 
each position, enabling parallel processing and better handling of long-
term dependencies. The core component of our OREO-Transformer is 
the encoder block, which consists of a multi-head self-attention layer 
followed by a position-wise feed-forward network. The multi-head 
attention mechanism splits the input into multiple attention heads, 
allowing the model to jointly attend to information from different 
representation subspaces at different positions. Each head computes 
attention scores using scaled dot-product attention, where the input 
sequence is transformed into queries, keys, and values through learned 
linear projections. Position encoding is added to the input embeddings 
to provide the model with information about the relative or absolute 
position of the events in the sequence, which is crucial since the Trans-
former architecture is inherently permutation-invariant. The model’s 
architecture concludes with a dense layer using softmax activation 
for predicting the next activity. This approach has shown promising 
results in process mining tasks, as it can effectively capture both local 
and global patterns in event sequences while being computationally 
efficient due to its parallel nature [67]. The OREO-Transformer neural 
network architecture is shown in Fig.  7a.

While the Transformer architecture demonstrates the power of 
pure attention-based approaches, we further investigated how atten-
tion mechanisms could enhance traditional sequential models. The 
last model we developed, OREO-SelfAttention combines LSTM and 
self-attention mechanisms, leveraging both the temporal modeling 
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Fig. 7. The attention-based OREO models and their components. (a) OREO-Transformer. (b) OREO-SelfAttention.
Table 3
Optimized hyperparameters.
 Network Parameters Value  
 
OREO-LSTM

Batch Size {128, 256, 512}  
 Learning Rate [0.0001, 0.01]  
 LSTM Unit Size {50, 100, 150, 200} 
 OREO-Inception Batch Size {128, 256, 512}  
 Learning Rate [0.0001, 0.01]  
 

OREO-Image

Batch Size {128, 256, 512}  
 Learning Rate [0.0001, 0.01]  
 Number of Filters {32, 64}  
 Kernel Size {2 × 2, 4 × 4}  
 Pool Size {2 × 2, 4 × 4}  
 
OREO-Transformer

Batch Size {128, 256, 512}  
 Learning Rate [0.0001, 0.01]  
 Number of Attention Heads {4, 8, 16}  
 Number of Transformer Blocks {2, 4, 8}  
 
OREO-SelfAttention

Batch Size {128, 256, 512}  
 Learning Rate [0.0001, 0.01]  
 LSTM Unit Size {50, 100, 150, 200} 
 Number of Attention Heads {4, 8, 16}  

capabilities of recurrent networks and the flexible focus provided by 
attention. Through a multi-head self-attention layer applied to the 
LSTM representations, the model can identify and weigh relevant 
events in the sequence regardless of their position. The combination 
of LSTM-generated representations and attention-weighted features 
is achieved through residual connections and normalization layers, 
ensuring effective information flow during training. This hybrid archi-
tecture provides insights into how attention mechanisms can enhance 
9 
Table 4
Quantitative characteristics of the analyzed event logs.
 Event Log Traces Events Activities 
 BPI12Complete 13 087 164506 23  
 BPI12 W 9658 170107 19  
 BPI12WComplete 9658 72413 6  
 Receipt 1434 8577 27  
 BPI13Incident 7554 65533 13  
 BPI13Problem 1841 9011 7  
 BPI17Offer 42 995 193849 8  
 BPI20Request 6886 36796 19  

sequential models for next activity prediction in business processes. The 
OREO-SelfAttention neural network architecture is shown in Fig.  7b. 

5. Experiments

In the following subsections, we first describe the implementa-
tion and optimization details of OREO. Subsequently, we describe the 
datasets (event logs) considered in the evaluation of the performance 
achieved by the five OREO models. Then we outline the experimental 
setting that aims to answer the following research questions: RQ1)
How does the sliding window dimension 𝑘 affect the accuracy of the 
predictive model?, and RQ2) How do our models compare with recent 
state-of-the-art deep learning approaches? Finally, we show and discuss 
the obtained results.

5.1. Models implementation and optimization

OREO has been implemented in Python 3.8.8, using TensorFlow 
2.4.1 as the neural network backend. The hyperparameter optimization 
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Table 5
Summary of evaluated competitor methods.
 Approach Data preprocessing Archi-

tecture
Perspectives 
used

Strengths Limitations  

 [5] One-hot encoding 
with temporal 
features

LSTM Activities, 
Time

Clear 
interpretability; 
Straightforward 
implementation

Performance 
decreases with 
increasing number 
of activities

 

 [54] Pre-trained 
embedding network

LSTM Activities, 
Time, 
Resources

Rich feature 
representation; 
Effective resource 
integration

Complex 
pre-training phase 
required

 

 [58] Embedding layer for 
activity encoding

LSTM Activities, 
Resources

Efficient 
representation of 
categorical data

Omits temporal 
aspects

 

 [60] Multi-view encoding LSTM All available 
features

Comprehensive 
feature utilization

Increased 
computational 
demands

 

 [61] Sequence encoding LSTM 
with 
shared 
atten-
tion

Activities, 
Time, 
Resources

Weighs importance 
of past activities

Requires significant 
computational 
resources

 

 [63] Image-like 
transformation of 
sequences

CNN Activities, 
Time

Excels at pattern 
recognition

Fixed input size 
requirement

 

 [64] RGB image 
encoding

CNN Activities, 
Time, 
Resources

Multi-dimensional 
feature 
representation

May struggle with 
long-term 
dependencies

 

 [67] Sequence encoding Trans-
former

Activities, 
Time

Models complex 
sequential 
dependencies

Highest 
computational 
requirements

 

Table 6
Results on the benchmark datasets with the OREO-LSTM model.
 k Accuracy Precision Recall Fscore

 
BPI12Complete

2 0.766 ± 0.003 0.692 ± 0.027 0.627 ± 0.001 0.636 ± 0.003 
 3 0.806 ± 0.008 0.700 ± 0.015 0.640 ± 0.004 0.665 ± 0.007 
 4 0.837 ± 0.007 0.688 ± 0.020 0.638 ± 0.006 0.651 ± 0.009 
 
BPI12W

2 0.900 ± 0.000 0.775 ± 0.014 0.723 ± 0.009 0.723 ± 0.006 
 3 0.906 ± 0.000 0.776 ± 0.012 0.725 ± 0.013 0.749 ± 0.012 
 4 0.905 ± 0.002 0.753 ± 0.014 0.715 ± 0.010 0.719 ± 0.007 
 
BPI12WComplete

2 0.811 ± 0.004 0.736 ± 0.005 0.687 ± 0.007 0.699 ± 0.005 
 3 0.852 ± 0.010 0.750 ± 0.030 0.708 ± 0.017 0.728 ± 0.020 
 4 0.849 ± 0.004 0.738 ± 0.024 0.707 ± 0.018 0.704 ± 0.009 
 
Receipt

2 0.882 ± 0.011 0.560 ± 0.010 0.511 ± 0.015 0.521 ± 0.007 
 3 0.918 ± 0.014 0.559 ± 0.008 0.511 ± 0.008 0.524 ± 0.009 
 4 0.947 ± 0.013 0.575 ± 0.012 0.520 ± 0.017 0.533 ± 0.013 
 
BPI13Incident

2 0.683 ± 0.005 0.459 ± 0.063 0.368 ± 0.014 0.374 ± 0.014 
 3 0.739 ± 0.004 0.448 ± 0.021 0.393 ± 0.017 0.380 ± 0.016 
 4 0.760 ± 0.004 0.445 ± 0.019 0.396 ± 0.030 0.390 ± 0.024 
 
BPI13Problem

2 0.678 ± 0.004 0.462 ± 0.066 0.438 ± 0.062 0.435 ± 0.065 
 3 0.748 ± 0.013 0.466 ± 0.044 0.446 ± 0.041 0.456 ± 0.043 
 4 0.826 ± 0.014 0.422 ± 0.041 0.427 ± 0.037 0.422 ± 0.040 
 
BPI17Offer

2 0.817 ± 0.002 0.553 ± 0.010 0.572 ± 0.000 0.508 ± 0.001 
 3 0.839 ± 0.002 0.583 ± 0.004 0.601 ± 0.000 0.582 ± 0.001 
 4 0.960 ± 0.001 0.435 ± 0.017 0.500 ± 0.000 0.462 ± 0.001 
 
BPI20Request

2 0.917 ± 0.004 0.565 ± 0.066 0.527 ± 0.062 0.522 ± 0.065 
 3 0.985 ± 0.001 0.622 ± 0.019 0.599 ± 0.003 0.608 ± 0.006 
 4 0.988 ± 0.001 0.617 ± 0.008 0.594 ± 0.032 0.581 ± 0.021 
phase has been conducted by exploiting the Hyperopt library [80]. For 
this purpose, we used 20% of the training set as the validation set. 
Table  3 reports the hyperparameters which have been tuned in the five 
models. Furthermore, the training phase was stopped if there was no 
improvement 0n the validation loss for 40 epochs (also known as ‘‘early 
stopping’’ principle). Finally, the loss function was optimized through 
the Adam Optimizer, with a maximum number of epochs set to 300.
10 
5.2. Event logs

We use eight event logs extracted from five well-known benchmark 
datasets, specifically: BPI12Complete, BPI12W, BPI12WComplete, Re-
ceipt, BPI13Incident, BPI13Problem, BPI17Offer and BPI20Request. Table 
4 summarizes the quantitative characteristics of the considered event 
logs.
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Table 7
Results on the benchmark datasets with the OREO-Inception model.
 k Accuracy Precision Recall Fscore

 
BPI12Complete

2 0.770 ± 0.002 0.718 ± 0.009 0.623 ± 0.003 0.633 ± 0.005 
 3 0.811 ± 0.002 0.728 ± 0.012 0.655 ± 0.006 0.668 ± 0.005 
 4 0.842 ± 0.002 0.730 ± 0.003 0.645 ± 0.005 0.662 ± 0.006 
 
BPI12W

2 0.889 ± 0.002 0.774 ± 0.016 0.725 ± 0.013 0.727 ± 0.012 
 3 0.903 ± 0.001 0.772 ± 0.016 0.735 ± 0.006 0.753 ± 0.004 
 4 0.904 ± 0.001 0.775 ± 0.017 0.713 ± 0.010 0.719 ± 0.007 
 
BPI12WComplete

2 0.808 ± 0.004 0.730 ± 0.001 0.674 ± 0.010 0.687 ± 0.009 
 3 0.830 ± 0.003 0.739 ± 0.005 0.693 ± 0.005 0.701 ± 0.007 
 4 0.847 ± 0.004 0.737 ± 0.026 0.689 ± 0.028 0.689 ± 0.017 
 
Receipt

2 0.882 ± 0.010 0.534 ± 0.033 0.485 ± 0.030 0.497 ± 0.031 
 3 0.917 ± 0.013 0.539 ± 0.029 0.489 ± 0.047 0.503 ± 0.042 
 4 0.946 ± 0.014 0.518 ± 0.028 0.472 ± 0.033 0.486 ± 0.030 
 
BPI13Incident

2 0.688 ± 0.003 0.456 ± 0.033 0.378 ± 0.018 0.387 ± 0.020 
 3 0.743 ± 0.005 0.442 ± 0.042 0.395 ± 0.015 0.407 ± 0.009 
 4 0.758 ± 0.008 0.421 ± 0.016 0.397 ± 0.030 0.392 ± 0.026 
 
BPI13Problem

2 0.683 ± 0.014 0.450 ± 0.076 0.431 ± 0.064 0.426 ± 0.069 
 3 0.762 ± 0.014 0.476 ± 0.042 0.461 ± 0.057 0.465 ± 0.060 
 4 0.832 ± 0.007 0.467 ± 0.069 0.460 ± 0.047 0.455 ± 0.051 
 
BPI17Offer

2 0.817 ± 0.002 0.556 ± 0.013 0.572 ± 0.000 0.507 ± 0.001 
 3 0.839 ± 0.002 0.596 ± 0.019 0.601 ± 0.000 0.518 ± 0.001 
 4 0.960 ± 0.001 0.447 ± 0.017 0.500 ± 0.000 0.462 ± 0.001 
 
BPI20Request

2 0.917 ± 0.014 0.573 ± 0.076 0.530 ± 0.064 0.525 ± 0.069 
 3 0.985 ± 0.001 0.629 ± 0.014 0.591 ± 0.013 0.603 ± 0.015 
 4 0.988 ± 0.001 0.650 ± 0.033 0.624 ± 0.078 0.612 ± 0.062 
Table 8
Results on the benchmark datasets with the OREO-Image model.
 k Accuracy Precision Recall Fscore

 2 0.744 ± 0.001 0.681 ± 0.012 0.581 ± 0.001 0.589 ± 0.001 
 3 0.799 ± 0.008 0.729 ± 0.015 0.636 ± 0.004 0.656 ± 0.007 
 
BPI12Complete

4 0.845 ± 0.001 0.730 ± 0.007 0.634 ± 0.009 0.658 ± 0.006 
 2 0.899 ± 0.001 0.778 ± 0.035 0.720 ± 0.010 0.717 ± 0.012 
 3 0.916 ± 0.003 0.779 ± 0.010 0.721 ± 0.008 0.719 ± 0.020 
 
BPI12W

4 0.913 ± 0.005 0.694 ± 0.084 0.651 ± 0.083 0.653 ± 0.083 
 2 0.830 ± 0.003 0.768 ± 0.001 0.707 ± 0.001 0.724 ± 0.001 
 3 0.860 ± 0.002 0.781 ± 0.023 0.763 ± 0.020 0.763 ± 0.021 
 
BPI12WComplete

4 0.881 ± 0.002 0.778 ± 0.012 0.756 ± 0.014 0.747 ± 0.013 
 2 0.827 ± 0.004 0.494 ± 0.040 0.473 ± 0.035 0.460 ± 0.034 
 3 0.905 ± 0.011 0.569 ± 0.045 0.531 ± 0.041 0.535 ± 0.037 
 
Receipt

4 0.947 ± 0.022 0.576 ± 0.074 0.520 ± 0.069 0.533 ± 0.069 
 2 0.680 ± 0.005 0.368 ± 0.021 0.359 ± 0.015 0.354 ± 0.015 
 3 0.739 ± 0.006 0.405 ± 0.014 0.363 ± 0.027 0.358 ± 0.015 
 
BPI13Incident

4 0.758 ± 0.004 0.441 ± 0.058 0.388 ± 0.034 0.380 ± 0.029 
 2 0.683 ± 0.015 0.455 ± 0.056 0.437 ± 0.054 0.434 ± 0.055 
 3 0.775 ± 0.005 0.468 ± 0.066 0.457 ± 0.052 0.446 ± 0.052 
 
BPI13Problem

4 0.847 ± 0.009 0.480 ± 0.063 0.461 ± 0.052 0.458 ± 0.052 
 2 0.817 ± 0.002 0.550 ± 0.003 0.572 ± 0.000 0.506 ± 0.001 
 3 0.838 ± 0.002 0.589 ± 0.003 0.601 ± 0.000 0.517 ± 0.002 
 
BPI17Offer

4 0.960 ± 0.001 0.435 ± 0.001 0.500 ± 0.000 0.462 ± 0.001 
 2 0.916 ± 0.015 0.512 ± 0.056 0.474 ± 0.054 0.463 ± 0.055 
 3 0.984 ± 0.002 0.611 ± 0.021 0.554 ± 0.013 0.548 ± 0.010 
 
BPI20Request

4 0.981 ± 0.011 0.572 ± 0.185 0.544 ± 0.174 0.541 ± 0.177 
BPI12 [81] is a real-world event log that contains processes ex-
tracted from loan applications at a Dutch financial institute, collected 
through an online system from 2011/10/01 to 2012/03/14. The logged 
activities are grouped into three specific sub-processes, each tracking 
a different state of the process i.e., state of the application – denoted 
by letter A, state of work items related to the application – denoted 
by letter W, and state of the offer – denoted by letter O. Starting 
from BPI12, we extracted three different event logs with three different 
complexity levels, to compare our method with the existing approaches. 
Specifically, BPI12Complete contains all the activity completion events 
from all the traces, BPI12 W contains all the activities for the subprocess 
W, and BPI12WComplete contains all the activity completion events for 
the subprocess W.
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The Receipt log [82] derives from the CoSeLoG project. Within 
the CoSeLoG project, the (dis)similarities between several municipality 
processes in the Netherlands have been investigated. Specifically, the 
dataset records logs of building permit application processes in different 
anonymous municipalities.

The BPI13 [83] log collects traces recorded by Volvo IT Belgium. 
The log contains events from an incident and problem management 
system called VINST. The primary goal of the Handle Incidents Process 
is to restore regular service operation as quickly as possible, therefore 
ensuring that the best possible levels of service quality and availability 
are maintained. If the action owner suspects that the incident might 
reoccur, a problem record is registered in the system. Thus, the log 
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Table 9
Results on the benchmark datasets with the OREO-Transformer model.
 k Accuracy Precision Recall Fscore

 
BPI12Complete

2 0.773 ± 0.001 0.725 ± 0.006 0.612 ± 0.006 0.627 ± 0.006 
 3 0.813 ± 0.001 0.730 ± 0.015 0.632 ± 0.004 0.652 ± 0.003 
 4 0.847 ± 0.002 0.729 ± 0.014 0.614 ± 0.011 0.638 ± 0.010 
 
BPI12W

2 0.891 ± 0.003 0.759 ± 0.026 0.712 ± 0.010 0.715 ± 0.004 
 3 0.903 ± 0.003 0.768 ± 0.027 0.715 ± 0.004 0.716 ± 0.011 
 4 0.903 ± 0.001 0.753 ± 0.015 0.704 ± 0.011 0.707 ± 0.005 
 
BPI12WComplete

2 0.802 ± 0.003 0.712 ± 0.019 0.663 ± 0.025 0.667 ± 0.022 
 3 0.840 ± 0.003 0.744 ± 0.013 0.726 ± 0.006 0.721 ± 0.013 
 4 0.852 ± 0.005 0.731 ± 0.034 0.709 ± 0.026 0.697 ± 0.023 
 
Receipt

2 0.884 ± 0.009 0.499 ± 0.035 0.472 ± 0.022 0.467 ± 0.033 
 3 0.919 ± 0.011 0.523 ± 0.019 0.492 ± 0.031 0.494 ± 0.032 
 4 0.942 ± 0.014 0.516 ± 0.045 0.491 ± 0.032 0.489 ± 0.041 
 
BPI13Incident

2 0.688 ± 0.004 0.426 ± 0.015 0.372 ± 0.014 0.374 ± 0.014 
 3 0.742 ± 0.005 0.398 ± 0.026 0.378 ± 0.017 0.366 ± 0.012 
 4 0.761 ± 0.005 0.409 ± 0.028 0.395 ± 0.031 0.380 ± 0.027 
 
BPI13Problem

2 0.587 ± 0.077 0.265 ± 0.045 0.309 ± 0.059 0.270 ± 0.060 
 3 0.717 ± 0.090 0.344 ± 0.124 0.366 ± 0.076 0.344 ± 0.099 
 4 0.846 ± 0.010 0.474 ± 0.063 0.456 ± 0.055 0.447 ± 0.059 
 
BPI17Offer

2 0.817 ± 0.002 0.558 ± 0.001 0.572 ± 0.000 0.506 ± 0.001 
 3 0.838 ± 0.002 0.599 ± 0.003 0.600 ± 0.000 0.516 ± 0.002 
 4 0.960 ± 0.001 0.435 ± 0.001 0.500 ± 0.000 0.462 ± 0.001 
 
BPI20Request

2 0.917 ± 0.003 0.523 ± 0.038 0.525 ± 0.021 0.509 ± 0.017 
 3 0.984 ± 0.001 0.579 ± 0.066 0.556 ± 0.030 0.550 ± 0.034 
 4 0.987 ± 0.001 0.575 ± 0.026 0.550 ± 0.036 0.545 ± 0.033 
can be naturally split into two sets of traces: those related to incidents 
(BPI13Incident) and those related to problems (BPI13Problem).

The BPI17Offer [84] is also a real event log containing sequences 
of a loan application process at the same Dutch financial institute as 
BPI12, but which started in 2016 and handled before 02-02-2017.

The BPI2020 [85] log collects data from the reimbursement process 
at TU/e University in the Netherlands. In particular, we exploited the 
request log, containing all the events involved in requests for payment 
not related to trips, from 2017 (two departments only) to 2018 (the full 
TU/e).

We choose these datasets since they come from different application 
domains, with a different number of traces and events, thus they can be 
effectively considered to understand if OREO encoding helps the model 
to generalize well.

5.3. Experimental setting

We compared our method to eight state-of-the-art next activity 
prediction frameworks ([5,54,58,60], [61], [63,64] and [67]).

Among the LSTM-based approaches, Tax et al. [5] introduced a 
straightforward yet effective method using one-hot encoding combined 
with temporal features. While this approach offers clear interpretability 
and straightforward implementation, its performance tends to decrease 
as the number of activities grows. Camargo et al. [54] addressed this 
limitation by developing a more sophisticated approach that pre-trains 
an embedding network to combine activity and resource informa-
tion. This results in richer feature representation, though at the cost 
of a more complex pre-training phase. Evermann et al. [58] took a 
different approach by implementing an embedding layer for activity 
encoding, achieving efficient representation of categorical data, but 
notably omitting temporal aspects in their analysis. Pasquadibisceglie 
et al. [60] proposed a comprehensive multi-view learning approach 
that effectively utilizes all available features, though this comes with 
increased computational demands.

Moving to CNN-based approaches, [63] introduced an innovative 
approach by transforming activity sequences into image-like represen-
tations. This method excels at pattern recognition but is constrained by 
its fixed input size requirement. Similarly, [64] developed a method 
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using RGB image encoding, offering multi-dimensional feature repre-
sentation while potentially struggling with long-term dependencies.

The most recent developments in the field include attention-based 
approaches by Wickramanayake et al. [61] and Bukhsh et al. [67]. 
In particular, [61] proposes an LSTM with shared attention mecha-
nism that weighs the importance of past activities, while [67] lever-
ages transformer architecture to model complex sequential dependen-
cies. Both approaches demonstrate strong capabilities in capturing 
complex relationships between activities, though requiring significant 
computational resources.

Beyond architectural differences, these methods also vary in their 
considered log perspectives. Indeed, [5,63] and [67] base their pre-
diction on the activities and time perspectives, while [58] neglects 
time and focuses only on activities and resources. The works presented 
in [54], [61] and [64] try to reconcile the previous points of view 
by exploiting activities, time and resource perspectives. Finally, [60] 
considers all the available features to predict the next activity. Sim-
ilarly to [5,63] and [67], our work uses both the activity and time 
perspectives when predicting the next activity in a trace. Table  5 pro-
vides a comprehensive comparison of these methods, highlighting their 
data preprocessing approaches, model architectures, and respective 
strengths and limitations.

All methods were trained using the best parameters reported in their 
respective papers when available [5,54,63], through optimization when 
the published code included it [60,64,67], or with default parameters 
otherwise [58,61].

To systematically evaluate and compare these different approaches, 
we performed a 3-fold cross-validation, training each model on two 
folds and evaluating the next activity prediction using the traces of 
the remaining fold. In the experiments we record the common macro 
performance measures in multi-class classification, that is, Accuracy, 
Precision, Recall, F-score, AUC and AUPRC.

5.4. Effect of the sliding window size

In Tables  6–10 we show the results obtained by our models OREO-
LSTM, OREO-Inception, OREO-Image, OREO-Transformer and OREO–
SelfAttention, respectively, when varying the dimension of the sliding 
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Table 10
Results on the benchmark datasets with the OREO-SelfAttention model.
 k Accuracy Precision Recall Fscore

 
BPI12Complete

2 0.767 ± 0.002 0.734 ± 0.009 0.603 ± 0.003 0.618 ± 0.005 
 3 0.807 ± 0.001 0.740 ± 0.014 0.616 ± 0.008 0.641 ± 0.009 
 4 0.842 ± 0.002 0.730 ± 0.012 0.620 ± 0.014 0.645 ± 0.016 
 
BPI12W

2 0.872 ± 0.002 0.691 ± 0.018 0.664 ± 0.005 0.648 ± 0.010 
 3 0.883 ± 0.003 0.697 ± 0.016 0.651 ± 0.017 0.634 ± 0.012 
 4 0.890 ± 0.003 0.679 ± 0.017 0.653 ± 0.011 0.640 ± 0.016 
 
BPI12WComplete

2 0.750 ± 0.007 0.656 ± 0.004 0.564 ± 0.014 0.581 ± 0.011 
 3 0.786 ± 0.004 0.690 ± 0.025 0.655 ± 0.020 0.652 ± 0.005 
 4 0.817 ± 0.009 0.701 ± 0.011 0.672 ± 0.029 0.658 ± 0.011 
 
Receipt

2 0.882 ± 0.010 0.523 ± 0.039 0.476 ± 0.029 0.483 ± 0.030 
 3 0.919 ± 0.012 0.519 ± 0.024 0.493 ± 0.027 0.497 ± 0.028 
 4 0.945 ± 0.014 0.538 ± 0.023 0.511 ± 0.047 0.512 ± 0.043 
 
BPI13Incident

2 0.689 ± 0.006 0.442 ± 0.027 0.373 ± 0.018 0.375 ± 0.019 
 3 0.740 ± 0.005 0.426 ± 0.039 0.370 ± 0.023 0.359 ± 0.016 
 4 0.760 ± 0.004 0.426 ± 0.017 0.385 ± 0.038 0.374 ± 0.028 
 
BPI13Problem

2 0.687 ± 0.014 0.467 ± 0.071 0.437 ± 0.060 0.433 ± 0.063 
 3 0.776 ± 0.011 0.479 ± 0.069 0.459 ± 0.052 0.451 ± 0.049 
 4 0.840 ± 0.009 0.467 ± 0.041 0.456 ± 0.042 0.452 ± 0.043 
 
BPI17Offer

2 0.817 ± 0.002 0.563 ± 0.007 0.572 ± 0.000 0.506 ± 0.001 
 3 0.838 ± 0.001 0.593 ± 0.018 0.601 ± 0.000 0.516 ± 0.001 
 4 0.960 ± 0.001 0.435 ± 0.001 0.500 ± 0.000 0.462 ± 0.001 
 
BPI20Request

2 0.917 ± 0.003 0.544 ± 0.034 0.519 ± 0.023 0.506 ± 0.024 
 3 0.983 ± 0.002 0.558 ± 0.014 0.552 ± 0.030 0.545 ± 0.024 
 4 0.987 ± 0.001 0.595 ± 0.050 0.600 ± 0.069 0.579 ± 0.047 
Table 11
Comparison of the AUC metric on the benchmark datasets for the OREO models.
 k OREO

LSTM
OREO
Inception

OREO
Image

OREO
Transformer

OREO
SelfAttention

 BPI12
Complete

2 0.808 ± 0.001 0.806 ± 0.002 0.783 ± 0.000 0.800 ± 0.003 0.795 ± 0.002 
 3 0.817 ± 0.002 0.813 ± 0.003 0.802 ± 0.002 0.811 ± 0.002 0.803 ± 0.004 
 4 0.815 ± 0.003 0.819 ± 0.002 0.813 ± 0.005 0.803 ± 0.006 0.806 ± 0.007 
 
BPI12W

2 0.858 ± 0.005 0.859 ± 0.007 0.857 ± 0.005 0.853 ± 0.005 0.828 ± 0.002 
 3 0.860 ± 0.006 0.860 ± 0.003 0.858 ± 0.004 0.855 ± 0.002 0.822 ± 0.009 
 4 0.855 ± 0.005 0.854 ± 0.005 0.823 ± 0.042 0.849 ± 0.006 0.823 ± 0.005 
 BPI12W
Complete

2 0.826 ± 0.003 0.820 ± 0.005 0.838 ± 0.001 0.813 ± 0.012 0.759 ± 0.007 
 3 0.841 ± 0.009 0.827 ± 0.003 0.869 ± 0.010 0.849 ± 0.003 0.808 ± 0.010 
 4 0.840 ± 0.009 0.831 ± 0.013 0.868 ± 0.007 0.841 ± 0.013 0.819 ± 0.015 
 
Receipt

2 0.767 ± 0.005 0.750 ± 0.017 0.739 ± 0.017 0.740 ± 0.013 0.746 ± 0.020 
 3 0.766 ± 0.003 0.748 ± 0.025 0.757 ± 0.025 0.754 ± 0.016 0.758 ± 0.012 
 4 0.774 ± 0.010 0.748 ± 0.023 0.774 ± 0.040 0.752 ± 0.018 0.759 ± 0.029 
 BPI13
Incident

2 0.670 ± 0.007 0.675 ± 0.009 0.665 ± 0.007 0.672 ± 0.007 0.672 ± 0.009 
 3 0.677 ± 0.008 0.680 ± 0.007 0.670 ± 0.008 0.678 ± 0.008 0.673 ± 0.012 
 4 0.687 ± 0.014 0.688 ± 0.015 0.683 ± 0.016 0.687 ± 0.015 0.682 ± 0.018 
 BPI13
Problem

2 0.691 ± 0.027 0.688 ± 0.028 0.692 ± 0.023 0.615 ± 0.037 0.691 ± 0.026 
 3 0.703 ± 0.017 0.706 ± 0.025 0.710 ± 0.023 0.655 ± 0.056 0.711 ± 0.023 
 4 0.708 ± 0.012 0.716 ± 0.022 0.718 ± 0.024 0.715 ± 0.026 0.714 ± 0.019 
 BPI17
Offer

2 0.770 ± 0.000 0.770 ± 0.000 0.770 ± 0.000 0.770 ± 0.000 0.770 ± 0.000 
 3 0.782 ± 0.000 0.782 ± 0.000 0.781 ± 0.000 0.781 ± 0.000 0.781 ± 0.000 
 4 0.744 ± 0.000 0.744 ± 0.000 0.744 ± 0.000 0.744 ± 0.000 0.744 ± 0.000 
 BPI20
Request

2 0.761 ± 0.027 0.762 ± 0.028 0.734 ± 0.023 0.760 ± 0.010 0.756 ± 0.011 
 3 0.789 ± 0.002 0.785 ± 0.006 0.776 ± 0.007 0.778 ± 0.015 0.781 ± 0.015 
 4 0.819 ± 0.034 0.812 ± 0.039 0.772 ± 0.087 0.774 ± 0.018 0.799 ± 0.034 
window 𝑘. We emphasize (in bold) the best result obtained for a given 
evaluation measure (column of the table). In the tables, we show the 
results for three different sliding window dimensions, i.e., 𝑘 ∈ {2, 3, 4}. 
This set of candidate values has been selected after a preliminary test to 
show the sensitivity of our encoding to the sliding window size. We do 
not show the results for 𝑘 ≥ 5, since we noticed a general performance 
decrease when training models on traces obtained with such a value. 
Additionally, in Tables  11 and 12 we show the results obtained for the 
AUC and AUPRC metrics by varying the OREO models.

We start our examination by looking at the accuracy metric (first 
column). Generally, we can immediately notice that using 𝑘 = 4
our models reach the best accuracy 35 times over 40 attempts. The 
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remaining five best accuracies are reached when 𝑘 = 3. Therefore, 
we should avoid smaller sliding window dimensions (i.e., 𝑘 = 2) to 
maximize the accuracy. These results are expected, since small time 
windows (i.e., 𝑘 ≤ 2) ignore positional encoding, while large time 
windows (i.e., 𝑘 ≥ 5) are prone to overfitting.

Nonetheless, accuracy may not be the preferred metric when deal-
ing with highly unbalanced logs, showing rare activities appearing 
only a few times over the entire log. Since in the performed experi-
ments, we included logs having such characteristics, namely Receipt, 
BPI13Problem, BPI13Incident and BPI20Request, other measures have 
to be considered, such as macro precision, macro recall and their 
harmonic mean indicated by the macro f-measure. From the results on 
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Table 12
Comparison of the AUPRC metric on the benchmark datasets for the OREO models.
 k OREO

LSTM
OREO
Inception

OREO
Image

OREO
Transformer

OREO
SelfAttention

 BPI12
Complete

2 0.485 ± 0.005 0.487 ± 0.004 0.451 ± 0.002 0.499 ± 0.004 0.491 ± 0.005 
 3 0.496 ± 0.012 0.501 ± 0.005 0.493 ± 0.012 0.512 ± 0.002 0.505 ± 0.009 
 4 0.499 ± 0.012 0.514 ± 0.009 0.522 ± 0.005 0.515 ± 0.008 0.518 ± 0.009 
 
BPI12W

2 0.634 ± 0.004 0.635 ± 0.010 0.649 ± 0.007 0.621 ± 0.005 0.578 ± 0.005 
 3 0.638 ± 0.012 0.636 ± 0.005 0.645 ± 0.005 0.627 ± 0.004 0.572 ± 0.010 
 4 0.622 ± 0.007 0.622 ± 0.007 0.576 ± 0.082 0.615 ± 0.009 0.568 ± 0.005 
 BPI12W
Complete

2 0.559 ± 0.004 0.549 ± 0.008 0.595 ± 0.001 0.534 ± 0.016 0.445 ± 0.004 
 3 0.585 ± 0.022 0.565 ± 0.003 0.629 ± 0.020 0.594 ± 0.011 0.522 ± 0.009 
 4 0.587 ± 0.017 0.575 ± 0.013 0.636 ± 0.009 0.586 ± 0.018 0.542 ± 0.014 
 
Receipt

2 0.478 ± 0.010 0.457 ± 0.033 0.412 ± 0.039 0.429 ± 0.043 0.446 ± 0.045 
 3 0.481 ± 0.012 0.449 ± 0.051 0.461 ± 0.049 0.461 ± 0.046 0.466 ± 0.040 
 4 0.496 ± 0.018 0.452 ± 0.049 0.496 ± 0.072 0.449 ± 0.049 0.463 ± 0.060 
 BPI13
Incident

2 0.308 ± 0.013 0.315 ± 0.014 0.302 ± 0.013 0.313 ± 0.013 0.312 ± 0.016 
 3 0.299 ± 0.009 0.303 ± 0.009 0.291 ± 0.009 0.298 ± 0.009 0.292 ± 0.014 
 4 0.308 ± 0.017 0.310 ± 0.021 0.305 ± 0.022 0.310 ± 0.019 0.300 ± 0.026 
 BPI13
Problem

2 0.332 ± 0.048 0.331 ± 0.047 0.333 ± 0.042 0.244 ± 0.046 0.335 ± 0.046 
 3 0.322 ± 0.035 0.333 ± 0.043 0.339 ± 0.043 0.279 ± 0.046 0.342 ± 0.042 
 4 0.320 ± 0.024 0.332 ± 0.040 0.342 ± 0.040 0.339 ± 0.041 0.333 ± 0.032 
 BPI17
Offer

2 0.487 ± 0.001 0.487 ± 0.001 0.487 ± 0.001 0.487 ± 0.001 0.487 ± 0.001 
 3 0.493 ± 0.001 0.493 ± 0.001 0.493 ± 0.001 0.493 ± 0.001 0.493 ± 0.001 
 4 0.445 ± 0.001 0.445 ± 0.001 0.445 ± 0.001 0.445 ± 0.001 0.445 ± 0.001 
 BPI20
Request

2 0.492 ± 0.048 0.494 ± 0.047 0.441 ± 0.042 0.485 ± 0.022 0.484 ± 0.023 
 3 0.534 ± 0.009 0.532 ± 0.013 0.511 ± 0.009 0.516 ± 0.027 0.518 ± 0.019 
 4 0.567 ± 0.043 0.564 ± 0.054 0.499 ± 0.176 0.531 ± 0.040 0.525 ± 0.045 
Table 13
p-values of the signed Wilcoxon rank tests for different analyzed metrics.
 p-Value Winner 
 F1 Score k = 3 vs k = 2 6.00E−09 k = 3  
 k = 3 vs k = 4 0.009 k = 3  
 Accuracy k = 3 vs k = 2 9.09E−13 k = 3  
 k = 3 vs k = 4 0.999 k = 4  
 AUC k = 3 vs k = 2 1.13E−06 k = 3  
 k = 3 vs k = 4 0.804 k = 4  
In bold statistically significant values (confidence=0.01).

these measures it appears that for all our models, the sliding window 
dimension leading to the best F-score is generally 𝑘 = 3.

These results can also be confirmed by looking at the AUPRC and 
AUC measures (Tables  11 and 12), where the models trained on a 
sliding window dimension of 𝑘 = 3 are consistently ranked in the top 
2 positions.

Additionally, in order to further confirm our evaluation, we per-
formed the one-tail Wilcoxon signed-rank test [86]. The null hypothesis
for this test is that the two samples are equal, so the tested approaches 
are equivalent. To accept or reject the null hypothesis, a p-value is 
calculated and compared with a threshold 𝛼 = 0.001. Specifically, 
we compare the F-score obtained when our models are trained with 
a sliding window dimension 𝑘 = 2 versus 𝑘 = 3 and 𝑘 = 3 versus 
𝑘 = 4, reporting the result in Table  13. The obtained p-values generally 
confirm our hypothesis, showing that the sliding window dimension 
that maximizes the F-score is 𝑘 = 3.

5.5. Comparison with state-of-the-art approaches

We compared the performance of our framework against those 
of eight state-of-the-art predictive process mining techniques based 
on deep learning. We emphasize that four of our predictive models, 
OREO-LSTM, OREO-Image, OREO-Inception, and OREO-Transformer, 
adopt the same predictive architectures from existing state-of-the-art 
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next activity prediction methods, i.e., [60,63,65], and [67], respec-
tively. This approach allows us to directly evaluate how our encoding 
framework enhances the performance of these existing architectures. 
The results are shown in Tables  14–17, highlighting the best score 
for each considered metric in bold. Regarding the OREO models, we 
only provide the results obtained with 𝑘 = 3, according to the results 
provided in Section 5.4.

From the results obtained by our competitor systems, we observe 
that  [67] always shows the best result in terms of F-score, while 
[60] achieves the best accuracy for seven logs over eight.  There-
fore, we consider [67] and [60] to be the leading competitors. The 
remaining competitors provide very similar results, depending on the 
dataset. We can also notice a general performance degradation when 
unbalanced datasets (like Receipt, BPI13Problem, BPI13Incident and 
BPI20Request) are considered.

Tables  14 and 15 show that OREO obtains the best performance in 
term of F-Score on six out of eight tested event logs. On BPI13Inci-
dent and BPI17Offer, while OREO achieves the third-highest F-scores 
behind [60,67], it does so using only activity and time perspectives, 
resulting in much lighter models. Moreover, looking at the accuracy re-
sults, OREO outperforms competitors on seven logs over eight. Another 
consideration comes from the results on unbalanced datasets where 
there is a clear indication that the use of sliding windows can mitigate 
the impact of rare classes on the overall classification. This is proba-
bly because the sliding window model, combined with the positional 
encoding, is able to catch local patterns. The AUC and AUPRC results 
(Tables  16 and 17) confirm the same considerations discussed before. 
Indeed, for these measures, the OREO models consistently achieve the 
best results for five out of eight tested datasets.

Comparing the five OREO variants, the Image-based model achieves 
the highest average accuracy (∼ 0.852), followed closely by LSTM-
based and inception-based models (∼ 0.850). OREO-Transformer and 
OREO-SelfAttention show marginally lower average accuracies (∼ 0.845
and ∼ 0.842 respectively). Looking at average F-scores, OREO-LSTM 
shows clearer superiority with ∼ 0.587, compared to OREO-Inception (∼
0.577) and OREO-Image (∼ 0.568). Also in this case, OREO-Transformer 
and OREO-SelfAttention show lower performance with ∼ 0.545 and 
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Table 14
Comparison between OREO models and state-of-the-art methods described in [5], [54], [58], [60], [61], 
[63], [64] and [67] for BPI12Complete, BPI12 W, BPI12WComplete and Receipt datasets. The best results 
are in bold.
 Approach Accuracy Precision Recall Fscore

 OREO-LSTM 0.806 ± 0.008 0.700 ± 0.015 0.640 ± 0.004 0.665 ± 0.007 
 OREO-Inception 0.811 ± 0.002 0.728 ± 0.012 0.655 ± 0.006 0.668 ± 0.005 
 OREO-Image 0.799 ± 0.008 0.729 ± 0.015 0.636 ± 0.004 0.656 ± 0.007 
 OREO-Transformer 0.813 ± 0.001 0.730 ± 0.015 0.632 ± 0.004 0.652 ± 0.003 
 OREO-SelfAttention 0.807 ± 0.001 0.740 ± 0.014 0.616 ± 0.008 0.641 ± 0.009 
 [5] 0.791 ± 0.001 0.765 ± 0.011 0.628 ± 0.003 0.645 ± 0.006 
 [54] 0.768 ± 0.002 0.708 ± 0.030 0.580 ± 0.002 0.578 ± 0.003 
 [58] 0.720 ± 0.002 0.649 ± 0.003 0.539 ± 0.001 0.549 ± 0.000 
 [60] 0.795 ± 0.003 0.780 ± 0.011 0.629 ± 0.005 0.646 ± 0.004 
 [61] 0.791 ± 0.001 0.751 ± 0.012 0.631 ± 0.008 0.644 ± 0.007 
 [63] 0.763 ± 0.007 0.692 ± 0.009 0.602 ± 0.008 0.612 ± 0.009 
 [64] 0.789 ± 0.001 0.761 ± 0.032 0.625 ± 0.004 0.640 ± 0.005 
 

BP
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[67] 0.774 ± 0.011 0.760 ± 0.015 0.652 ± 0.010 0.654 ± 0.012 
 OREO-LSTM 0.906 ± 0.000 0.776 ± 0.012 0.725 ± 0.013 0.749 ± 0.012 
 OREO-Inception 0.903 ± 0.001 0.772 ± 0.016 0.735 ± 0.006 0.753 ± 0.004 
 OREO-Image 0.916 ± 0.003 0.779 ± 0.010 0.721 ± 0.008 0.719 ± 0.020 
 OREO-Transformer 0.903 ± 0.003 0.768 ± 0.027 0.715 ± 0.004 0.716 ± 0.011 
 OREO-SelfAttention 0.883 ± 0.003 0.697 ± 0.016 0.651 ± 0.017 0.634 ± 0.012 
 [5] 0.881 ± 0.002 0.767 ± 0.032 0.686 ± 0.009 0.677 ± 0.011 
 [54] 0.869 ± 0.020 0.628 ± 0.015 0.610 ± 0.017 0.589 ± 0.017 
 [58] 0.818 ± 0.002 0.626 ± 0.040 0.602 ± 0.002 0.566 ± 0.001 
 [60] 0.909 ± 0.001 0.775 ± 0.032 0.693 ± 0.015 0.693 ± 0.018 
 [61] 0.905 ± 0.001 0.751 ± 0.012 0.702 ± 0.006 0.700 ± 0.008 
 [63] 0.879 ± 0.006 0.697 ± 0.011 0.657 ± 0.010 0.646 ± 0.017 
 [64] 0.904 ± 0.003 0.746 ± 0.012 0.684 ± 0.006 0.680 ± 0.019 
 

BP
I1
2W

[67] 0.902 ± 0.932 0.772 ± 0.003 0.732 ± 0.003 0.708 ± 0.003 
 OREO-LSTM 0.852 ± 0.010 0.750 ± 0.030 0.708 ± 0.017 0.728 ± 0.020 
 OREO-Inception 0.830 ± 0.003 0.739 ± 0.005 0.693 ± 0.005 0.701 ± 0.007 
 OREO-Image 0.860 ± 0.002 0.781 ± 0.023 0.763 ± 0.020 0.763 ± 0.021 
 OREO-Transformer 0.840 ± 0.003 0.744 ± 0.013 0.726 ± 0.006 0.721 ± 0.013 
 OREO-SelfAttention 0.786 ± 0.004 0.690 ± 0.025 0.655 ± 0.020 0.652 ± 0.005 
 [5] 0.764 ± 0.001 0.737 ± 0.010 0.643 ± 0.015 0.653 ± 0.010 
 [54] 0.780 ± 0.006 0.652 ± 0.037 0.594 ± 0.015 0.583 ± 0.008 
 [58] 0.711 ± 0.005 0.589 ± 0.015 0.535 ± 0.003 0.528 ± 0.001 
 [60] 0.842 ± 0.004 0.790 ± 0.006 0.684 ± 0.011 0.699 ± 0.009 
 [61] 0.835 ± 0.004 0.771 ± 0.022 0.690 ± 0.007 0.707 ± 0.009 
 [63] 0.776 ± 0.009 0.717 ± 0.005 0.603 ± 0.013 0.609 ± 0.024 
 [64] 0.822 ± 0.013 0.782 ± 0.032 0.653 ± 0.018 0.679 ± 0.015 
 

BP
I1
2W
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[67] 0.848 ± 0.002 0.742 ± 0.007 0.746 ± 0.002 0.741 ± 0.004 
 OREO-LSTM 0.918 ± 0.014 0.559 ± 0.008 0.511 ± 0.008 0.524 ± 0.009 
 OREO-Inception 0.917 ± 0.013 0.539 ± 0.029 0.489 ± 0.047 0.503 ± 0.042 
 OREO-Image 0.905 ± 0.011 0.569 ± 0.045 0.531 ± 0.041 0.535 ± 0.037 
 OREO-Transformer 0.919 ± 0.011 0.523 ± 0.019 0.492 ± 0.031 0.494 ± 0.032 
 OREO-SelfAttention 0.919 ± 0.012 0.519 ± 0.024 0.493 ± 0.027 0.497 ± 0.028 
 [5] 0.854 ± 0.009 0.479 ± 0.034 0.482 ± 0.021 0.467 ± 0.037 
 [54] 0.841 ± 0.013 0.467 ± 0.013 0.470 ± 0.006 0.460 ± 0.009 
 [58] 0.812 ± 0.009 0.446 ± 0.079 0.438 ± 0.049 0.429 ± 0.062 
 [60] 0.864 ± 0.013 0.523 ± 0.034 0.498 ± 0.045 0.490 ± 0.044 
 [61] 0.858 ± 0.010 0.497 ± 0.047 0.497 ± 0.037 0.491 ± 0.044 
 [63] 0.782 ± 0.082 0.472 ± 0.089 0.418 ± 0.095 0.424 ± 0.103 
 [64] 0.848 ± 0.021 0.491 ± 0.061 0.468 ± 0.070 0.471 ± 0.065 
 

Re
ce
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t

[67] 0.576 ± 0.576 0.565 ± 0.121 0.503 ± 0.122 0.521 ± 0.123 
∼ 0.537 respectively. This lower performance can be attributed to their 
inherent focus on learning complex long-range dependencies. In our 
case, where the encoding already captures temporal patterns, these 
attention mechanisms might introduce unnecessary complexity without 
adding substantial benefits. Moreover, the sliding window approach we 
adopted naturally limits the sequence length, making simpler architec-
tures like LSTM and CNN more effective at learning the local patterns 
within these bounded contexts.

Figs.  8 and 9 provide a statistical analysis of the F-score and 
accuracy results. We conducted a Friedman test to detect statistical 
differences among the compared approaches, followed by a Nemenyi 
post-hoc test for pair-wise performance comparisons. The final rankings 
are shown in these figures. Among the five variants of OREO, LSTM 
achieves the best ranking for both F-score and accuracy, although no 
15 
statistically significant differences emerge among the variants. For F-
score, while OREO-LSTM shows no statistical difference from [60,61], 
and [67], it consistently achieves better rankings. This superiority 
becomes even more evident in accuracy measurements, where all five 
OREO variants consistently rank in the top positions. It is worth noting 
that in both scenarios, the remaining competitors [5,54,58,61,63,64] 
show no statistically significant differences among themselves.

Furthermore, Table  18 presents the average F-score and accuracy 
rankings of all evaluated approaches, categorized by their underlying 
architectures. The advantages of using OREO are readily apparent, as 
models incorporating our proposed encoding outperform those with the 
same architecture but alternative encodings in 3 out of 4 cases. The 
performance improvements can be attributed to the core innovation 
of OREO encoding, which emphasizes recent activities through sliding 
windows to better manage process dynamics, employs total ordering to 
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Table 15
Comparison between OREO models and state-of-the-art methods described in [5], [54], [58], [60], [61], 
[63], [64] and [67] for BPI13Incident, BPI13Problem, BPI17Offer and BPI20Request datasets. The best 
results are in bold.
 Approach Accuracy Precision Recall Fscore

 OREO-LSTM 0.739 ± 0.004 0.448 ± 0.021 0.393 ± 0.017 0.380 ± 0.016 
 OREO-Inception 0.743 ± 0.005 0.442 ± 0.042 0.395 ± 0.015 0.407 ± 0.009 
 OREO-Image 0.739 ± 0.006 0.405 ± 0.014 0.363 ± 0.027 0.358 ± 0.015 
 OREO-Transformer 0.742 ± 0.005 0.398 ± 0.026 0.378 ± 0.017 0.366 ± 0.012 
 OREO-SelfAttention 0.740 ± 0.005 0.426 ± 0.039 0.370 ± 0.023 0.359 ± 0.016 
 [5] 0.665 ± 0.006 0.345 ± 0.019 0.270 ± 0.001 0.270 ± 0.001 
 [54] 0.652 ± 0.009 0.295 ± 0.018 0.260 ± 0.013 0.249 ± 0.014 
 [58] 0.647 ± 0.001 0.296 ± 0.001 0.249 ± 0.001 0.240 ± 0.002 
 [60] 0.724 ± 0.003 0.455 ± 0.027 0.423 ± 0.007 0.435 ± 0.012 
 [61] 0.682 ± 0.016 0.405 ± 0.004 0.383 ± 0.012 0.389 ± 0.007 
 [63] 0.628 ± 0.005 0.304 ± 0.021 0.291 ± 0.047 0.258 ± 0.027 
 [64] 0.661 ± 0.004 0.421 ± 0.018 0.332 ± 0.017 0.334 ± 0.016 
 

BP
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[67] 0.567 ± 0.073 0.553 ± 0.070 0.566 ± 0.069 0.549 ± 0.069 
 OREO-LSTM 0.748 ± 0.013 0.466 ± 0.044 0.446 ± 0.041 0.456 ± 0.043 
 OREO-Inception 0.762 ± 0.014 0.476 ± 0.042 0.461 ± 0.057 0.465 ± 0.060 
 OREO-Image 0.775 ± 0.005 0.468 ± 0.066 0.457 ± 0.052 0.446 ± 0.052 
 OREO-Transformer 0.717 ± 0.090 0.344 ± 0.124 0.366 ± 0.076 0.344 ± 0.099 
 OREO-SelfAttention 0.776 ± 0.011 0.479 ± 0.069 0.459 ± 0.052 0.451 ± 0.049 
 [5] 0.529 ± 0.013 0.342 ± 0.016 0.293 ± 0.006 0.286 ± 0.003 
 [54] 0.505 ± 0.007 0.283 ± 0.055 0.266 ± 0.007 0.238 ± 0.014 
 [58] 0.582 ± 0.004 0.291 ± 0.003 0.256 ± 0.019 0.235 ± 0.001 
 [60] 0.621 ± 0.011 0.411 ± 0.013 0.402 ± 0.008 0.405 ± 0.009 
 [61] 0.609 ± 0.007 0.404 ± 0.006 0.386 ± 0.009 0.392 ± 0.008 
 [63] 0.502 ± 0.005 0.295 ± 0.046 0.266 ± 0.018 0.246 ± 0.021 
 [64] 0.595 ± 0.006 0.404 ± 0.008 0.374 ± 0.010 0.381 ± 0.011 
 

BP
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[67] 0.428 ± 0.022 0.434 ± 0.050 0.444 ± 0.023 0.415 ± 0.030 
 OREO-LSTM 0.839 ± 0.002 0.583 ± 0.004 0.601 ± 0.000 0.582 ± 0.001 
 OREO-Inception 0.839 ± 0.002 0.596 ± 0.019 0.601 ± 0.000 0.518 ± 0.001 
 OREO-Image 0.838 ± 0.002 0.589 ± 0.003 0.601 ± 0.000 0.517 ± 0.002 
 OREO-Transformer 0.838 ± 0.002 0.599 ± 0.003 0.600 ± 0.000 0.516 ± 0.002 
 OREO-SelfAttention 0.838 ± 0.001 0.593 ± 0.018 0.601 ± 0.000 0.516 ± 0.001 
 [5] 0.804 ± 0.024 0.454 ± 0.013 0.563 ± 0.014 0.496 ± 0.014 
 [54] 0.817 ± 0.003 0.461 ± 0.001 0.571 ± 0.000 0.504 ± 0.001 
 [58] 0.857 ± 0.002 0.602 ± 0.044 0.624 ± 0.001 0.566 ± 0.001 
 [60] 0.894 ± 0.001 0.820 ± 0.010 0.715 ± 0.002 0.721 ± 0.002 
 [61] 0.814 ± 0.002 0.666 ± 0.025 0.576 ± 0.000 0.530 ± 0.008 
 [63] 0.817 ± 0.002 0.485 ± 0.024 0.571 ± 0.000 0.505 ± 0.001 
 [64] 0.819 ± 0.003 0.701 ± 0.028 0.578 ± 0.003 0.529 ± 0.011 
 

BP
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[67] 0.793 ± 0.002 0.679 ± 0.003 0.806 ± 0.002 0.730 ± 0.002 
 OREO-LSTM 0.985 ± 0.001 0.622 ± 0.019 0.599 ± 0.003 0.608 ± 0.006 
 OREO-Inception 0.985 ± 0.001 0.629 ± 0.014 0.591 ± 0.013 0.603 ± 0.015 
 OREO-Image 0.984 ± 0.002 0.611 ± 0.021 0.554 ± 0.013 0.548 ± 0.010 
 OREO-Transformer 0.984 ± 0.001 0.579 ± 0.066 0.556 ± 0.030 0.550 ± 0.034 
 OREO-SelfAttention 0.983 ± 0.002 0.558 ± 0.014 0.552 ± 0.030 0.545 ± 0.024 
 [5] 0.856 ± 0.004 0.527 ± 0.020 0.433 ± 0.003 0.428 ± 0.002 
 [54] 0.857 ± 0.004 0.499 ± 0.014 0.423 ± 0.017 0.425 ± 0.017 
 [58] 0.879 ± 0.003 0.425 ± 0.049 0.405 ± 0.027 0.390 ± 0.026 
 [60] 0.882 ± 0.004 0.586 ± 0.006 0.472 ± 0.036 0.491 ± 0.040 
 [61] 0.858 ± 0.002 0.503 ± 0.020 0.425 ± 0.015 0.418 ± 0.015 
 [63] 0.855 ± 0.003 0.507 ± 0.009 0.424 ± 0.016 0.418 ± 0.014 
 [64] 0.856 ± 0.004 0.500 ± 0.023 0.420 ± 0.016 0.411 ± 0.013 
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[67] 0.914 ± 0.004 0.612 ± 0.004 0.604 ± 0.004 0.608 ± 0.003 
accurately capture activity sequences, and integrates time lag informa-
tion. Together, these elements create a robust process representation 
that effectively captures only the relevant information needed for the 
next activity prediction task.

To further validate our approach, we analyzed the computational 
aspects of all methods, considering preprocessing time, training time, 
and model size (number of learnable weights), as shown in Tables  19
and 20. This analysis provides insights into the practical applicability 
and efficiency of each method. The analysis reveals interesting patterns 
across different architectures and datasets. In terms of preprocessing 
time, OREO variants generally show consistent and relatively low 
preprocessing times (1–90 s), with OREO-Image requiring slightly more 
preprocessing time than other variants due to an additional step needed 
16 
to create the imageset using the DeepInsight method [77]. In contrast, 
some competitors like [64,67] require significantly longer preprocess-
ing (up to 1400 s) to prepare the logs to be effectively exploited by 
their neural networks for the learning phase.

Regarding training time, OREO variants demonstrate efficient per-
formance. OREO-Inception consistently shows the fastest training times 
among our variants (5–172 s), followed by OREO-Image (10–148 s) 
and OREO-LSTM (51–306 s). OREO-Transformer typically requires the 
longest training time among our variants (81–829 s). Compared to 
competitors, our methods show substantially faster training times, with 
some competitors requiring up to 9300 s (e.g., [60,67] on BPI12 W). 
Thus, from the analysis of preprocessing and training time, it emerges 
that some of the closest competitors (in terms of F-score and accuracy), 
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Table 16
Comparison of AUC and AUPRC achieved by OREO models and the state-
of-the-art methods described in [5], [54], [58], [60], [61], [63], [64] 
and [67] for BPI12Complete, BPI12 W, BPI12WComplete and Receipt 
datasets. The best results are in bold.
 Approach AUC AUPRC
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OREO-LSTM 0.817 ± 0.002 0.496 ± 0.012 
 OREO-Inception 0.813 ± 0.003 0.501 ± 0.005 
 OREO-Image 0.802 ± 0.002 0.493 ± 0.012 
 OREO-Transformer 0.811 ± 0.002 0.512 ± 0.002 
 OREO-SelfAttention 0.803 ± 0.004 0.505 ± 0.009 
 [5] 0.809 ± 0.001 0.522 ± 0.003 
 [54] 0.785 ± 0.001 0.462 ± 0.003 
 [58] 0.762 ± 0.002 0.410 ± 0.004 
 [60] 0.810 ± 0.002 0.526 ± 0.005 
 [61] 0.810 ± 0.004 0.518 ± 0.006 
 [63] 0.795 ± 0.004 0.477 ± 0.005 
 [64] 0.807 ± 0.002 0.516 ± 0.003 
 [67] 0.810 ± 0.008 0.491 ± 0.003 
 

BP
I1
2W

OREO-LSTM 0.860 ± 0.006 0.638 ± 0.012 
 OREO-Inception 0.860 ± 0.003 0.636 ± 0.005 
 OREO-Image 0.858 ± 0.004 0.645 ± 0.005 
 OREO-Transformer 0.855 ± 0.002 0.627 ± 0.004 
 OREO-SelfAttention 0.822 ± 0.009 0.572 ± 0.010 
 [5] 0.840 ± 0.004 0.601 ± 0.005 
 [54] 0.801 ± 0.009 0.533 ± 0.027 
 [58] 0.794 ± 0.001 0.492 ± 0.003 
 [60] 0.844 ± 0.007 0.623 ± 0.008 
 [61] 0.848 ± 0.003 0.622 ± 0.003 
 [63] 0.825 ± 0.005 0.576 ± 0.007 
 [64] 0.838 ± 0.006 0.611 ± 0.004 
 [67] 0.834 ± 0.044 0.639 ± 0.008 
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OREO-LSTM 0.841 ± 0.009 0.585 ± 0.022 
 OREO-Inception 0.827 ± 0.003 0.565 ± 0.003 
 OREO-Image 0.869 ± 0.010 0.629 ± 0.020 
 OREO-Transformer 0.849 ± 0.003 0.594 ± 0.011 
 OREO-SelfAttention 0.808 ± 0.010 0.522 ± 0.009 
 [5] 0.799 ± 0.005 0.534 ± 0.008 
 [54] 0.771 ± 0.008 0.488 ± 0.008 
 [58] 0.740 ± 0.001 0.425 ± 0.002 
 [60] 0.824 ± 0.005 0.586 ± 0.002 
 [61] 0.826 ± 0.004 0.582 ± 0.013 
 [63] 0.775 ± 0.007 0.498 ± 0.013 
 [64] 0.812 ± 0.003 0.570 ± 0.010 
 [67] 0.861 ± 0.010 0.619 ± 0.003 
 

Re
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OREO-LSTM 0.766 ± 0.003 0.481 ± 0.012 
 OREO-Inception 0.748 ± 0.025 0.449 ± 0.051 
 OREO-Image 0.757 ± 0.025 0.461 ± 0.049 
 OREO-Transformer 0.754 ± 0.016 0.461 ± 0.046 
 OREO-SelfAttention 0.758 ± 0.012 0.466 ± 0.040 
 [5] 0.748 ± 0.012 0.425 ± 0.056 
 [54] 0.738 ± 0.007 0.414 ± 0.028 
 [58] 0.720 ± 0.015 0.375 ± 0.044 
 [60] 0.754 ± 0.029 0.444 ± 0.075 
 [61] 0.756 ± 0.020 0.452 ± 0.047 
 [63] 0.703 ± 0.050 0.367 ± 0.112 
 [64] 0.730 ± 0.036 0.431 ± 0.083 
 [67] 0.756 ± 0.035 0.435 ± 0.014 

like [60,67], require a higher computational complexity to achieve 
their results. As further confirmed by the statistical analysis shown in 
Fig.  10, OREO variants consistently ranked among the fastest methods. 
While some approaches like [58,63] show comparable total times, 
it is important to note that they achieve significantly lower predic-
tive performance, making our methods more efficient in terms of the 
accuracy-time trade-off. We motivate this behavior with the core idea of 
OREO of combining the sliding window mechanism with the positional 
encoding that allows the method to represent only relevant information 
for the inference task.

These conclusions are further supported by analyzing the number 
of learnable weights, which generally indicates model complexity and 
directly correlates with memory consumption during both training and 
17 
Table 17
Comparison of AUC and AUPRC achieved by OREO models and state-of-
the-art methods described in [5], [54], [58], [60], [61], [63], [64] and 
[67] for BPI13Incident, BPI13Problem, BPI17Offer and BPI20Request 
datasets. The best results are in bold.
 Approach AUC AUPRC
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OREO-LSTM 0.677 ± 0.008 0.299 ± 0.009 
 OREO-Inception 0.680 ± 0.007 0.303 ± 0.009 
 OREO-Image 0.670 ± 0.008 0.291 ± 0.009 
 OREO-Transformer 0.678 ± 0.008 0.298 ± 0.009 
 OREO-SelfAttention 0.673 ± 0.012 0.292 ± 0.014 
 [5] 0.625 ± 0.006 0.221 ± 0.012 
 [54] 0.612 ± 0.007 0.208 ± 0.010 
 [58] 0.601 ± 0.006 0.196 ± 0.011 
 [60] 0.698 ± 0.003 0.297 ± 0.019 
 [61] 0.676 ± 0.006 0.262 ± 0.010 
 [63] 0.625 ± 0.020 0.211 ± 0.017 
 [64] 0.648 ± 0.008 0.238 ± 0.011 
 [67] 0.706 ± 0.019 0.301 ± 0.056 
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OREO-LSTM 0.703 ± 0.017 0.322 ± 0.035 
 OREO-Inception 0.706 ± 0.025 0.333 ± 0.043 
 OREO-Image 0.710 ± 0.023 0.339 ± 0.043 
 OREO-Transformer 0.655 ± 0.056 0.279 ± 0.046 
 OREO-SelfAttention 0.711 ± 0.023 0.342 ± 0.042 
 [5] 0.607 ± 0.008 0.236 ± 0.012 
 [54] 0.584 ± 0.004 0.210 ± 0.004 
 [58] 0.592 ± 0.004 0.210 ± 0.004 
 [60] 0.665 ± 0.005 0.296 ± 0.009 
 [61] 0.656 ± 0.005 0.286 ± 0.007 
 [63] 0.584 ± 0.011 0.208 ± 0.010 
 [64] 0.648 ± 0.006 0.278 ± 0.007 
 [67] 0.691 ± 0.031 0.338 ± 0.036 
 

BP
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OREO-LSTM 0.782 ± 0.000 0.493 ± 0.001 
 OREO-Inception 0.782 ± 0.000 0.493 ± 0.001 
 OREO-Image 0.781 ± 0.000 0.493 ± 0.001 
 OREO-Transformer 0.781 ± 0.000 0.493 ± 0.001 
 OREO-SelfAttention 0.781 ± 0.000 0.493 ± 0.001 
 [5] 0.765 ± 0.009 0.478 ± 0.015 
 [54] 0.770 ± 0.000 0.487 ± 0.001 
 [58] 0.802 ± 0.000 0.545 ± 0.001 
 [60] 0.849 ± 0.002 0.632 ± 0.002 
 [61] 0.772 ± 0.000 0.490 ± 0.002 
 [63] 0.770 ± 0.000 0.487 ± 0.001 
 [64] 0.774 ± 0.001 0.493 ± 0.004 
 [67] 0.504 ± 0.003 0.480 ± 0.001 
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OREO-LSTM 0.789 ± 0.002 0.534 ± 0.009 
 OREO-Inception 0.785 ± 0.006 0.532 ± 0.013 
 OREO-Image 0.776 ± 0.007 0.511 ± 0.009 
 OREO-Transformer 0.778 ± 0.015 0.516 ± 0.027 
 OREO-SelfAttention 0.781 ± 0.015 0.518 ± 0.019 
 [5] 0.711 ± 0.001 0.404 ± 0.003 
 [54] 0.706 ± 0.017 0.396 ± 0.015 
 [58] 0.698 ± 0.013 0.374 ± 0.029 
 [60] 0.738 ± 0.009 0.434 ± 0.014 
 [61] 0.707 ± 0.007 0.397 ± 0.016 
 [63] 0.706 ± 0.008 0.395 ± 0.013 
 [64] 0.704 ± 0.007 0.393 ± 0.013 
 [67] 0.724 ± 0.011 0.525 ± 0.756 

inference. In this sense, OREO variants maintain relatively compact 
models. OREO-Image consistently shows the smallest model size (17K–
295K parameters), while OREO-SelfAttention typically has the largest 
(451K–515K parameters). These sizes are generally competitive with 
or smaller than most baselines, particularly compared to methods 
like [64] which can reach up to 14M parameters. 

6. Conclusions

This paper proposes a novel method for next activity prediction 
from event logs, called OREO, which performs event log encoding, 
based on sliding windows. It exploits relative activity position to re-
align the partial traces and extract useful information on traces and 
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Table 18
Comparison of the average F-score and precision rank for the proposed model versus competitors, categorized 
by model architecture.
 Architecture Approach Avg Fscore rank Avg accuracy rank 
 

LSTM

OREO-LSTM 2.563 3.188  
 [5] 9.500 9.875  
 [54] 11.500 10.438  
 [58] 11.750 10.000  
 [60] 5.938 4.750  
 
CNN

OREO-Image 4.125 3.500  
 OREO-Inception 3.250 3.563  
 [63] 11.063 11.563  
 [64] 8.750 8.438  
 Transformer OREO-Transformer 5.625 3.813  
 [67] 2.813 9.875  
 Attention-based OREO-SelfAttention 6.563 4.688  
 [61] 7.563 7.313  
Table 19
Preprocessing and training times (in seconds) and the number of weights for each evaluated model on the 
BPI12Complete, BPI12 W, BPI12WComplete, and Receipt datasets.
 Approach Preprocessing time Training time Weights 
 

BP
I1
2C
om

pl
et
e

OREO-LSTM 25.44 202.36 171K  
 OREO-Inception 25.44 130.25 68K  
 OREO-Image 89.66 142.07 38K  
 OREO-Transformer 25.44 581.72 357K  
 OREO-SelfAttention 25.44 182.90 502K  
 [5] 25.69 1745.70 216K  
 [54] 276.45 4493.54 329K  
 [58] 23.01 163.83 10K  
 [60] 34.55 7715.91 118K  
 [61] 32.14 1965.73 132K  
 [63] 52.86 181.03 626K  
 [64] 827.63 982.56 6M  
 [67] 839.41 7177.86 34K  
 

BP
I1
2W

OREO-LSTM 25.60 241.29 37K  
 OREO-Inception 25.60 149.00 63K  
 OREO-Image 75.28 195.89 17K  
 OREO-Transformer 25.60 819.17 276K  
 OREO-SelfAttention 25.60 166.05 493K  
 [5] 34.61 1898.50 214K  
 [54] 282.38 4232.03 329K  
 [58] 23.23 235.17 10K  
 [60] 36.58 9309.19 72K  
 [61] 32.89 2745.14 119K  
 [63] 10.55 59.04 650K  
 [64] 654.24 687.48 2,1M  
 [67] 930.62 7667.45 36K  
 

BP
I1
2W

Co
m
pl
et
e

OREO-LSTM 10.75 118.61 101K  
 OREO-Inception 10.75 79.65 28K  
 OREO-Image 16.92 65.16 29K  
 OREO-Transformer 10.75 405.33 44K  
 OREO-SelfAttention 10.75 77.83 451K  
 [5] 6.64 719.39 207K  
 [54] 183.24 1778.82 327K  
 [58] 10.66 393.59 9K  
 [60] 14.58 1541.54 83K  
 [61] 13.16 356.50 105K  
 [63] 11.38 59.07 40K  
 [64] 85.89 148.76 902K  
 [67] 126.50 2757.88 32K  
 

Re
ce
ip
t

OREO-LSTM 1.40 54.88 43K  
 OREO-Inception 1.40 9.58 93K  
 OREO-Image 6.85 11.75 21K  
 OREO-Transformer 1.40 103.28 481K  
 OREO-SelfAttention 1.40 41.19 515K  
 [5] 0.59 214.45 217K  
 [54] 55.14 538.90 329K  
 [58] 1.83 338.30 10K  
 [60] 2.68 295.56 99K  
 [61] 1.56 134.32 115K  
 [63] 1.53 9.61 588K  
 [64] 51.02 50.87 7,4M  
 [67] 3.89 402.21 32K  
18 
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Table 20
Preprocessing and training times (in seconds) and the number of weights for each evaluated model on the 
BPI13Incident, BPI13Problem, BPI17Offer, and BPI20Request datasets.
 Approach Preprocessing time Training time Weights 
 

BP
I1
3I
nc
id
en
t

OREO-LSTM 10.31 83.36 137K  
 OREO-Inception 10.31 38.57 68K  
 OREO-Image 20.55 35.02 18K  
 OREO-Transformer 10.31 263.02 138K  
 OREO-SelfAttention 10.31 86.35 472K  
 [5] 7.02 1229.75 210K  
 [54] 295.01 2461.71 327K  
 [58] 15.55 309.02 9K  
 [60] 25.74 1414.45 2M  
 [61] 12.09 372.87 3.5M  
 [63] 11.64 84.89 583K  
 [64] 1418.74 1014.59 14M  
 [67] 103.72 2790.06 34K  
 

BP
I1
3P
ro
bl
em

OREO-LSTM 1.57 51.47 182K  
 OREO-Inception 1.57 5.63 71K  
 OREO-Image 2.67 10.80 29K  
 OREO-Transformer 1.57 81.12 55K  
 OREO-SelfAttention 1.57 39.70 454K  
 [5] 0.37 303.80 208K  
 [54] 40.96 473.97 327K  
 [58] 1.49 181.34 9K  
 [60] 3.01 132.22 535K  
 [61] 1.70 71.63 1M  
 [63] 1.13 8.73 565K  
 [64] 64.21 52.16 12M  
 [67] 3.44 372.00 31K  
 

BP
I1
7O
ffe
r

OREO-LSTM 32.94 306.56 254K  
 OREO-Inception 32.94 172.96 415K  
 OREO-Image 46.67 148.57 39K  
 OREO-Transformer 32.94 829.64 44K  
 OREO-SelfAttention 32.94 322.93 451K  
 [5] 8.98 6443.18 208K  
 [54] 427.92 8629.07 327K  
 [58] 40.39 220.69 9K  
 [60] 65.14 2581.88 117K  
 [61] 33.57 718.10 202K  
 [63] 32.67 174.74 34K  
 [64] 750.05 681.28 1,4M  
 [67] 1180.13 8150.20 30K  
 

BP
I2
0R
eq
ue
st

OREO-LSTM 6.16 58.02 181K  
 OREO-Inception 6.16 20.57 456K  
 OREO-Image 15.31 33.16 295K  
 OREO-Transformer 6.16 182.29 259K  
 OREO-SelfAttention 6.16 57.04 491K  
 [5] 2.19 707.25 213K  
 [54] 61.68 1070.26 329K  
 [58] 6.84 176.75 10K  
 [60] 10.12 640.25 364K  
 [61] 6.69 432.02 61K  
 [63] 5.92 28.78 586K  
 [64] 39.00 266.86 2,1M  
 [67] 35.84 1612.15 32K  
temporal patterns among the activities. OREO is designed to work 
with different deep learning architectures, based on LSTMs, CNNs, and 
attention-based models.

We evaluated the proposed method on several real-world process 
mining datasets for the next activity prediction of running traces. The 
(statistical) comparison of OREO performances, in all its five variants, 
with those achieved by eight other competitors, show the superiority of 
our method. This confirms our initial intuition that the encoding which 
(i) adapts to sliding windows and (ii) is able to model the position of 
the activities within the sliding windows, is beneficial.

The method’s versatility makes it particularly suitable for various 
industrial applications. In manufacturing, OREO can enhance produc-
tion planning by predicting next operations and potential bottlenecks. 
In healthcare, it can support patient flow management by anticipating 
next treatment steps and resource requirements. In financial services, 
it can improve customer service by predicting next client interactions 
19 
and preparing appropriate responses. Furthermore, In IoT-enabled en-
vironments, it can process real-time sensor data to predict maintenance 
needs and optimize resource utilization. The sliding window approach 
is particularly valuable in these contexts as it allows for real-time 
adaptation to changing process patterns.

Despite these promising results, we acknowledge certain limitations 
of our approach. The sliding window size needs to be carefully tuned 
based on the specific process characteristics, as it affects both predic-
tion accuracy and computational efficiency. Additionally, the method’s 
performance might be affected when dealing with highly irregular 
processes where the temporal patterns are less evident. The current 
implementation also assumes that all activities within the sliding win-
dow have equal importance, which might not always reflect real-world 
scenarios.

To possibly address these limitations, as future work, we plan to 
implement an adaptive window size mechanism that automatically 
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Fig. 8. Comparison of the F-score achieved by the OREO models and their competitors 
through the Nemenyi test. Approaches that are not significantly different are connected 
by a red line.

Fig. 9. Comparison of the accuracy achieved by the OREO models and their com-
petitors through the Nemenyi test. Approaches that are not significantly different are 
connected by a red line.

Fig. 10. Comparison of the total running time (preprocessing + training) of the OREO 
variants and competitors. Models on the right side have lower running times. According 
to the Nemenyi test, the approaches that are not significantly different are connected 
by a red line.

determines the size on the basis of process characteristics, possibly com-
bining multiple window sizes for more robust predictions. Additionally, 
we will investigate enhanced temporal pattern detection techniques to 
better handle irregular processes, making OREO more effective across 
various real-world scenarios.

Furthermore, while this paper demonstrates the effectiveness of 
OREO for next activity prediction, its position-aware encoding ap-
proach shows promise for other predictive process monitoring tasks. 
For trace completion time prediction, the relative positions encoded 
by OREO could help capture temporal dependencies that influence 
completion times, particularly in processes with parallel activities or 
varying execution speeds. For outcome prediction, the method’s ability 
20 
to capture activity patterns within windows could be leveraged to 
identify sequence signatures that correlate with specific outcomes. The 
sliding window mechanism could be particularly valuable for early 
outcome prediction, as it naturally handles partial traces. Additionally, 
the method could be extended to predict multiple activities ahead 
or even entire trace suffixes, where the position encoding could help 
maintain sequential consistency in the predictions. These extensions 
would further expand OREO’s practical applications across different do-
mains while maintaining its core advantages in position-aware pattern 
recognition. 
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