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A B S T R A C T

Cryptocurrencies are virtual currencies that exploit cryptography to perform secure financial transactions. They
gained widespread popularity in recent years due to their decentralized nature, (pseudo-)anonymity, and ability
to facilitate cross-border transactions without the need for intermediaries. However, their price on the market
exhibits a huge volatility, that makes them prone to market anomalies. Therefore, predicting anomalies in
cryptocurrency time series can be considered an important task for financial institutions, traders, and investors,
to maximize their profit or minimize losses.

In this paper, we propose a novel approach for predicting anomalies in cryptocurrency time series by
exploiting temporal correlations among different cryptocurrencies. Our approach, called CARROT, is based on
the idea that groups of cryptocurrencies exhibit similar trends, possibly due to common influencing factors.
CARROT analyzes the temporal correlation between different cryptocurrencies, and identifies clusters showing
similar patterns that can be useful for gaining insights into future anomalies. Subsequently, CARROT exploits
multiple (i.e., one for each cluster) multi-target LSTM models to predict anomalies.

Our experiments, performed on a dataset of 17 cryptocurrencies, proved that CARROT outperforms single-
target LSTM models of up to 20%, as well as other approaches based on neural networks, i.e., MLP and CNN, in
terms of macro F1-score. Therefore, the proposed approach can be considered as a promising tool for predicting
anomalies in cryptocurrency time series data and can potentially be used to improve risk management and
trading strategies in the cryptocurrency market.
1. Introduction

Since its debut, the cryptocurrency industry has grown at an in-
credible rate, reaching a capitalization peak of $3 trillion in November
2021. A cryptocurrency is a digital currency that can be used to make
online payments and exchanged for other cryptocurrencies or Fiat
currencies. Cryptocurrencies are not subject to control by any central
authority and their transactions are stored on the blockchain. Even if
the blockchain was first introduced by Haber and Stornetta (1990) as
a cryptographically secured chain of blocks, it gained popularity in 2008
after Satoshi Nakamoto introduced the first (and most popular) cryp-
tocurrency named Bitcoin (Nakamoto, 2008). The goal of Bitcoin was
to provide an algorithmic decentralized replacement to the traditional
economic system, which entirely relies on centralized trusted third-
party organizations (such as banks) to validate and execute monetary
transactions. Besides Bitcoin, many other cryptocurrencies have been
launched over time, each living on a blockchain with its own features
and functionalities.
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The environment related to the blockchain and cryptocurrencies,
together with the technological advancements brought to several do-
mains needing decentralization and transparency, has also attracted
interest for its speculative aspects. Indeed, the huge market volatility
observed for several cryptocurrencies (e.g., the Bitcoin price changed
from a few cents in 2009 to around 60k$ in 2021, and is priced at
around 25k$ at the time of writing) makes this environment incredibly
appealing for individual and institutional investors, enthusiasts, and
academics (Bhutta et al., 2021). An idea about the global trend of
the cryptocurrency market capitalization (cap) and the daily trading
volume from July 2018 to June 2022 is given in Fig. 1.

An accurate analysis of financial time series appears to be crucial
for traders and institutional investors to increase the chances to make
profits (or minimize losses), i.e., to discover patterns or manipulation
activities, and to identify buy/sell signals. Although authoritative stud-
ies based on the ‘‘Efficient Market Hypothesis’’ (Fama, 1970) claim that
https://doi.org/10.1016/j.eswa.2024.125457
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Fig. 1. Global cryptocurrency market cap (in blue) and daily volume (in gray) from June 2018 to May 2022.
financial markets follow a random walk and are unpredictable, the field
of stock market analysis and prediction has attracted researchers in
the Machine Learning field, whose obtained results suggest that stock
(and cryptocurrency) trends can, at least partially, be predicted on
the basis of historical data (Alvo et al., 2011; Caporale et al., 2018;
Onali & Goddard, 2011). The cryptocurrency market, contrary to the
traditional stock market, is also characterized by frequent, abrupt,
sharp swings and falls, which make the predictive task even more diffi-
cult. Additional challenges come from the strong influence of external
factors, such as global politics, market cycles, public opinion, or (also
fake) news (Colon et al., 2021; Rognone et al., 2020; Wątorek et al.,
2023). A relevant example can be observed in the effect caused by
the publication of economic data from the US on the increase trading
activity on cryptocurrencies described by Wątorek et al. (2023).

Existing state-of-the-art systems analyze historical market trends
and additional factors influencing each cryptocurrency (Chen et al.,
2020; La Morgia et al., 2020; Lahmiri & Bekiros, 2019). However, it
is very common for the same factors to influence groups of related (in
terms of technology, vision, or growth potential) cryptocurrencies. To
the best of the authors knowledge, no existing method in the literature
is able to capture the possible dependencies among different cryptocur-
rencies, possibly influenced by common external factors. In this paper
we aim to fill this gap by proposing CARROT (Clustering enhAnced cRyp-
tocuRrency anOmaly predicTion), a novel machine learning method that
analyzes the cryptocurrency market and exploits possible dependencies
among different cryptocurrencies, both in historical trends (in the
descriptive space of the learned models) and in the future trends (in the
target/output space of the learned models). Methodologically, CARROT
first identifies groups of cryptocurrencies that appear to be influenced
by the same factors since exhibited a similar trend in the past (in terms
of price, statistical indicators and market sentiment). Subsequently,
CARROT learns a deep multi-target model for each group, that is able
to simultaneously predict the future occurrence of anomalous situations
(i.e., abrupt price variations) for all the cryptocurrencies falling in the
same group. Note that the task solved by CARROT is different from the
classical anomaly detection task, which generally aims to learn a model
able to label an already-observed instance as normal or anomalous. On
the contrary, CARROT aims to early predict the future occurrence of
such anomalies.

The remaining sections of the paper are structured as follows: in
Section 2, we briefly review some related work; in Section 3, we
describe the details of the proposed method; in Section 4, we show the
results of our experimental evaluation. Finally, in Section 5, we draw
some conclusions and outline potential directions for future research.

2. Related work

The analysis of time series related to cryptocurrencies belongs to
the broader field of stock market and financial time series analysis,
about which many studies have already addressed forecasting (Cao
& Tay, 2001; Gupta & Dhingra, 2012; Sheta, 2006) and anomaly
detection tasks (Al-Thani, 2017; Diaz et al., 2011; Sardar et al., 2022).
To forecast the stock price, several existing studies adopted classi-
cal statistical time-series approaches based on historical data, such
2 
as moving average (MA) (Fifield et al., 2008), auto-regressive mov-
ing average (ARMA) (Tang, 2021), autoregressive integrated mov-
ing average (ARIMA) (Ariyo et al., 2014), generalized auto-regressive
conditional heteroscedasticity (GARCH) (Franses & Van Dijk, 1996),
Kalman filtering (Deepika & Nirupama Bhat, 2021) and exponential
smoothing (Shukor et al., 2021).

More recently, researchers focused on the adoption of Artificial
Intelligence (AI) and soft computing techniques. Indeed, the nonlinear,
chaotic, noisy, and complex phenomena behind the stock market trends
may be better governed through these techniques, possibly resulting
in more accurate forecasts (Chen & Hao, 2017). The method CAR-
ROT proposed in this paper falls in this field of research, and, as
already mentioned in Section 1, aims to predict the occurrence of future
anomalies in the cryptocurrency market, i.e., abrupt price variation in
the hourly market observations. For this reason, in Section 2.1, we
briefly introduce existing methods aiming to solve forecasting tasks
on financial time series. Moreover, since our method is tailored for
the prediction of anomalies, in Section 2.2 we discuss some existing
approaches for anomaly detection on financial time series, even if not
able to specifically predict the future occurrence of such anomalies as
done by CARROT.

2.1. Forecasting methods for financial time series

Despite the fact that we can easily identify several subtasks (each
with some specifics), such as stock price forecasting, index prediction,
forex price forecasting, commodity price forecasting, volatility fore-
casting, and cryptocurrency price forecasting, the underlying dynamics
and, therefore, the methodologies proposed in the literature, are very
similar.

Hu et al. (2013) exploited the Support Vector Machines (SVM) to
predict the profitability of an investment over 15 different companies.
The authors integrated data from the Federal Reserve Bank of St. Louis
with four company-specific variables (net revenue, net income, price
per earnings ratio of stock, diluted earnings per share) and six different
macroeconomic variables (consumer spending, consumer investment,
unemployment rate, inflation rate, federal funds rate, and the Dow
Jones industrial average). To train the SVM model, the authors man-
ually labeled each stock as good or poor, based on the performance of
the company in the previous year. Similarly, SVM-based models have
also been adopted by Gururaj et al. (2019), Huang et al. (2008) and
Xia et al. (2013). However, in all these works, the results emphasized
overfitting issues, mainly due to the presence of high amounts of noise
in the dataset (Cawley & Talbot, 2010; Chiu & Chen, 2009; Yu et al.,
2008). Moreover, these methods only consider one stock at a time,
ignoring possible correlations that may exist among stocks of different
companies in the construction of the predictive models.

Ballings et al. (2015) compared the performance of different ma-
chine learning algorithms when dealing with the stock price trend
prediction. The experimental evaluation considered stocks of more than
5000 publicly listed European companies, with the goal of predicting
their performance one-year ahead. The obtained results emphasized
that Random Forests was the top-performing algorithm, followed by



A. Pellicani et al.

t
s

Expert Systems With Applications 260 (2025) 125457 
SVM, AdaBoost, and K-NN. Moreover, the authors confirmed that con-
sidering financial technical indicators, like the Return on Assets (ROA),
the Return on Equity (ROE), and the Return on Capital Employed
(ROCE), can improve the predictive accuracy.

Due to the high accuracy demonstrated in several domains, deep
learning methods and, more in general, approaches based on neural
networks, found application also in the context of forecasting for finan-
cial time series. An example can be found in the work by Chong et al.
(2017), who aim to predict the stock return. The authors exploited a
simple multilayer perceptron, and investigated the influence of three
unsupervised feature extraction methods. In the experiments, the per-
formance of the neural network was compared against a traditional
autoregressive model. The results obtained on a real dataset gathered
from the KOSPI market indicated that the prediction ability was vari-
able and dependent on a variety of environmental and user-determined
parameters.

Focusing on the cryptocurrency market, Hasan et al. (2022) ex-
ploited convolutional neural networks (CNN) to predict the price of
four different cryptocurrencies: Litecoin, Monero, Bitcoin, and
Ethereum. The considered dataset consists of the OHLCV daily data,
namely the opening price (O), the highest price (H), the lowest price
(L), the closing price (C), and the exchange volume (V) of each
analyzed cryptocurrency. Furthermore, the authors exploited Twitter
APIs to scrape tweets about the crypto market in the analyzed time
period, enriching the dataset with the sentiment score of the investors
discussing the market conditions.

Awoke et al. (2021) used two recurrent neural networks (RNNs)
for the daily forecast of the Bitcoin price. Specifically, they used the
gated recurrent unit (GRU) (Bahdanau et al., 2014) and long short-term
memory (LSTM) (Hochreiter & Schmidhuber, 1997) architectures. The
considered dataset covers the period from January 1, 2014 to February
20, 2018. Both models took into account a total of seven variables,
including OHLCV information and market capitalization. Experimental
results indicated that GRU-based models are more effective in forecast-
ing highly volatile time series. Nevertheless, the analysis also revealed
that LSTM exhibits superior performances when the measurements of
only 7 previous days are used as descriptive features.

Multiple studies on sequence learning (Bao et al., 2017; Chimmula &
Zhang, 2020; Fischer & Krauss, 2018; Ma et al., 2015; Yao et al., 2018)
demonstrated that LSTM-based architectures can be considered state-
of-the-art approaches for time series forecasting. They are, indeed, the
most adopted deep learning model to deal with cryptocurrency price
forecasting. A relevant example is the work by Yiying and Yeze (2019),
who compared the performances of a simple fully-connected neural
network with an LSTM model when trying to forecast the price of three
popular cryptocurrencies (Bitcoin, Ethereum, and Ripple). Their results
highlighted the effectiveness of LSTM in exploiting helpful information
in historical memory.

Compared to existing approaches, the method CARROT proposed in
this paper adopts several multi-target LSTM models instead of a single
vanilla LSTM, each of which is trained on a group of similar cryptocur-
rencies. As a result, CARROT can consider the similar trend of other
cryptocurrencies (which are likely to be influenced by similar factors)
at training and prediction time, thus achieving better performances
compared to existing models.

2.2. Anomaly detection methods for financial time series

Market anomaly detection, which aims to detect rapid changes
in the direction of the market, can be considered a specific task of
market trend analysis. Many existing works adopt anomaly detection
approaches to recognize fraud or market manipulations. For exam-
ple, Golmohammadi and Zaiane (2015) propose a Contextual Anomaly
Detection (CAD) method to analyze financial time series from the S&P
Index. First, the authors manually group the time series of the daily

stock closing price, based on their industrial field. Then, for each p
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identified group, they compute a centroid, which is used (together with
other features) to predict the future price at two different granularities,
i.e., daily and weekly. Finally, a prediction score is assigned to each
analyzed point based on the Euclidean distance between the predicted
and the observed values. If such a score exceeds the standard deviation
of the analyzed time series, the point is considered as anomalous.
Even though the approach is promising, we argue that an automated
clustering phase based on the analysis of the historical trend, as done
by CARROT, is much more appropriate than a grouping merely based
on the industrial field.

Another significant example can be found in the work by Takara
et al. (2021), who performed unsupervised anomaly detection via au-
toencoders on the Indice da Bolsa de Valores de Sao Paulo (IBOVESPA).
The authors compared different autoencoder architectures and based
the identification of anomalies on the reconstruction error. This repre-
sents a common strategy adopted by unsupervised anomaly detection
methods, and requires comparing the actual data with the predicted
value to obtain an anomaly score. Consequently, this approach cannot
be adopted to predict the future occurrence of an anomalous situation,
but only to detect it once it has been observed.

Focusing on the cryptocurrency market, several research groups
shifted their focus on the identification of fraud and market manip-
ulations. An example is the work by La Morgia et al. (2020), who
adopted Random Forests and Logistic Regression to identify pump and
dumps1 in the Bitcoin time series data. Other valuable examples can be
found in Sridhar et al. (2020) and Sridhar and Sanagavarapu (2021).
The former work still focuses on detecting market manipulations by
employing several ensembled feed-forward neural networks, while the
latter has a more general focus on the identification of price and volume
anomalies in the market.

We remind that none of the cited works focuses on predicting abrupt
price variations that could affect the cryptocurrency market in the
near future. This is a crucial task since it could allow investors to
act proactively, selling or buying their securities and maximizing the
obtained gain. Furthermore, only Golmohammadi and Zaiane (2015)
tried to exploit the similarity between different financial time series to
improve the final prediction. As already said, our framework CARROT
uses the similarity between the different cryptocurrency time series to
improve the ability to predict abrupt price variations and provide a
concrete support to investors.

3. The proposed method CARROT

The workflow of the proposed method CARROT is illustrated in
Fig. 2. The following subsections discuss the main steps performed
to solve the anomaly prediction task on a specific cryptocurrency.
Specifically, in Section 3.1 we describe the data preparation steps to
solve the considered task; in Section 3.2 we explain the approach
we adopt to identify groups of correlated cryptocurrencies, based on
temporal clustering; finally, in Section 3.3 we provide details about the
multi-target LSTM models we learn to capture such correlations.

3.1. Data preparation

CARROT starts with a preliminary phase consisting of acquiring,
labeling, and adjusting data before the modeling phase. Specifically, the
Data Acquisition phase relies on the Yahoo! Finance API, which allows
access to financial information, including stock quotes, historical prices,
company information, and crypto-market trends, with information on
over 9000 unique coins. Using the API, we collected the following

1 Pump and dump (P&D) is a type of securities fraud that entails boosting
he price of an owned stock artificially by making false and deceptive positive
tatements, with the aim of massively selling the stock later at an inflated
rice, possibly causing a subsequent price drop.
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Fig. 2. General workflow of the proposed method CARROT.
features, at an hourly temporal granularity, in the form of multivariate
time series: opening price, closing price, highest price, lowest price,
adjusted closing price, and exchange volume. These features have often
been adopted by other studies on the analysis of financial data (Awoke
et al., 2021; Hasan et al., 2022).

Subsequently, the Labeling phase is responsible for labeling each
observation as anomalous or normal. We remark that the model that
we will learn from the observations labeled in such a way will aim
to early predict the future occurrence of such anomalies, and not to
identify them when they already occurred.

Methodologically, we rely on the definition of an anomaly in fi-
nancial time series, that is, an abrupt variation in the price. For this
purpose, given a threshold 𝑠, we label the data according to three differ-
ent labels, i.e., normal, upward anomaly (an_up), and downward anomaly
(an_down). Note that a low value of 𝑠 may imply the presence of an
unnaturally high number of anomalies. In contrast, a high value of 𝑠
would lead to the identification of very few anomalous observations (Ko
et al., 2022). However, it is noteworthy that defining a value for 𝑠 does
not represent a methodological choice, but can rather define a different
goal: if we want to learn a model able to early predict slight changes,
we can label the dataset with a low value of 𝑠; on the contrary, if we
only want to make the model able to early predict huge changes, a
higher value of 𝑠 is more appropriate.

We also want to point out that the anomaly prediction task is gen-
erally more practically useful than forecasting the actual future value
of a cryptocurrency. Indeed, in most financial time series applications,
accurately forecasting the future price is not considered as crucial as
accurately determining the direction of the market, which in turn may
suggest a buy/sell signal.

More formally, given an observation 𝑥𝑡, its label is defined as:

𝑙𝑎𝑏𝑒𝑙(𝑥𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑎𝑛_𝑢𝑝 if 𝛥𝑡 ≥ 𝑠,

𝑎𝑛_𝑑𝑜𝑤𝑛 if 𝛥𝑡 ≤ −𝑠,

𝑛𝑜𝑟𝑚𝑎𝑙 otherwise,
(1)

where 𝛥𝑡 is the percentage of variation computed on the pair
⟨𝐶(𝑥𝑡), 𝐶(𝑥𝑡−1)⟩ with 𝐶(𝑥𝑡) and 𝐶(𝑥𝑡−1) corresponding to the hourly
closing price for observation 𝑥𝑡 and 𝑥𝑡−1, respectively.

After preliminary labeling all the hourly observations of the time
series using Eq. (1), we employ the Curve Shifting approach, that is
a label shift process, which is crucial for the considered anomaly
prediction task. In fact, investors are interested in being alerted early
about possible upcoming market anomalies to sell their assets before
a market collapse, or to proactively buy new assets before a pump.
Accordingly, we adopted some label-shifting rules to label the obser-
vations as anomalous, up to 𝑛 hours before a real anomaly happens.
Algorithm 1 briefly describes the adopted strategy. Note that if a 𝑛-
hours interval contains market oscillations (with both up and down
4 
Algorithm 1: The adopted curve-shifting algorithm
Data:

𝐷 = ⟨𝑥1, 𝑥2, ..., 𝑥|𝐷|

⟩: the dataset to process,
𝑛: the desired number of previous observations to which
propagate

an anomaly label
1 begin
2 for 𝑡 ← 𝑛 to |𝐷| do

// 𝑙(𝑥) is the label of the observation 𝑥
3 if 𝑙(𝑥𝑡) = an_up then
4 if 𝑙(𝑥𝑡−1) ≠ an_down ∧ ... ∧ 𝑙(𝑥𝑡−𝑛+1) ≠ an_down then

// We propagate the an_up label to the
previous 𝑛 observations

5 ⟨𝑙(𝑥𝑡−1), ... , 𝑙(𝑥𝑡−𝑛+1)⟩ ← ⟨𝑎𝑛_𝑢𝑝, ..., 𝑎𝑛_𝑢𝑝⟩
6 else

// We set to normal the label of the
current and of the previous
observations, since a market
oscillation happened

7 ⟨𝑙(𝑥𝑡), ... , 𝑙(𝑥𝑡−𝑛+1)⟩ ← ⟨𝑛𝑜𝑟𝑚𝑎𝑙, ..., 𝑛𝑜𝑟𝑚𝑎𝑙⟩
8 end
9 else if 𝑙(𝑥𝑡) = an_down then
10 if 𝑙(𝑥𝑡−1) ≠ an_up ∧ ... ∧ 𝑙(𝑥𝑡−𝑛+1) ≠ an_up then

// We propagate the an_down label to
the previous 𝑛 observations

11 ⟨𝑙(𝑥𝑡−1), ... , 𝑙(𝑥𝑡−𝑛+1)⟩ ← ⟨𝑎𝑛_𝑑𝑜𝑤𝑛, ..., 𝑎𝑛_𝑑𝑜𝑤𝑛⟩
12 else

// We set to normal the label of the
current and of the previous
observations, since a market
oscillation happened

13 ⟨𝑙(𝑥𝑡), ... , 𝑙(𝑥𝑡−𝑛+1)⟩ ← ⟨𝑛𝑜𝑟𝑚𝑎𝑙, ..., 𝑛𝑜𝑟𝑚𝑎𝑙⟩
14 end
15 end
16 end

anomalies), we label all the observations as normal, since in that case,
the market does not indicate a clear trend, and any trading action
would not be based on clear indications.

In Fig. 3, we show an example of the learning setting considered by
CARROT, where the value of the parameter 𝑛 for the curve shifting is
set to 2.

Finally, CARROT performs a Feature Expansion phase, in which the
feature set is expanded by considering 16 financial indicators, that, by
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Fig. 3. An example of the CARROT learning setting with 𝑙 = 3 (length of the sequence considered for each instance) and 𝑛 = 2 (number of hours considered by the curve shifting).
varying the value of their parameters, lead to 48 new features. Table 1
shows an overview of the considered financial indicators, while further
information about them can be found in the work by Achelis (2001).
In addition, analogously to similar studies (de Oliveira Carosia et al.,
2021; Karthikeyan et al., 2021; Valle-Cruz et al., 2022), we enrich
our dataset by adding a Fear and Greed2 indicator that takes into
account the market sentiment, by simultaneously considering different
perspectives, i.e., the market volatility and the market momentum, as
well as social parameters like the posted hashtags and Google Trends
indicators. In summary, the considered data are multivariate time series
with a total of 61 features. Further details on the actual dataset adopted
in our experiments will be provided in Section 4.1.

3.2. Temporal clustering

The price of cryptocurrencies is usually influenced by multiple
external factors, i.e., rumors about businesses, new product releases, or
political events. In the specific field of cryptocurrencies, these factors
can simultaneously affect multiple assets (Sovbetov, 2018), also ampli-
fied by social networks. Therefore, it is crucial to recognize groups of
cryptocurrencies exhibiting similar patterns in their trends, since they
are probably affected by common external factors.

In CARROT, we group together cryptocurrencies exhibiting sim-
ilar trends in terms of closing price through a specific clustering
phase that exploits the Dynamic Time Warping (DTW) distance mea-
sure (Vintsyuk, 1968) and the clustering algorithm K-Medoids (Kauf-
man & Rousseeuw, 1990). The identified groups will subsequently
be used to learn multi-target predictive models, able to capture the
correlations among the cryptocurrencies fallen in the same group
(further details about this step will be provided in Section 3.3).

DTW is one of the strategies that can be used in time series analysis
to compare temporal sequences with possibly different speeds. Besides
this characteristics, it is known to be superior to Euclidean distance
due to its ability to compare time series with some offset and with
different amplitude and length (Guijo-Rubio et al., 2020; Wang et al.,
2013). This is achieved by identifying one-to-many and many-to-one
matches between the time points of the time series. Fig. 4 shows an

2 www.alternative.me/crypto/fear-and-greed-index.
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Table 1
The financial indicators added to the dataset in the Feature Expansion phase. Each
indicator may lead to multiple features, by varying the value of its parameter 𝑥.

Indicator Description Parameters

SMA_x Simple Moving Average on 𝑥 days 𝑥 ∈ {5, 12, 13, 14, 20, 21,
26, 30, 50, 100, 200}

EMA_x Exponential Moving Average on 𝑥 days 𝑥 ∈ {5, 12, 13, 14, 20, 21,
26, 30, 50, 100, 200}

RSI_x Relative Strength Index on 𝑥 days 𝑥 ∈ {5, 12, 13, 14, 20, 21,
26, 30, 50, 100, 200}

MACD Moving Average Fast = 12, slow = 26,
Convergence/Divergence signal = 9

MACDH Moving Average Fast = 12, slow = 26,
Convergence/Divergence Histogram signal = 9

MACDS Moving Average Fast = 12, slow = 26,
Convergence/Divergence Signal signal = 9

STOCHF_x Fast Stochastic Oscillator on 𝑥 days 𝑥 ∈ {3, 14}

STOCH_x Slow Stochastic Oscillator on 𝑥 days 𝑥 ∈ {3, 5}

BBL_20 Bollinger Bands Lower Length = 20

BBM_20 Bollinger Bands Mid Length = 20

BBU_20 Bollinger Bands Upper Length = 20

VWAP Volume-weighted Average Price –

MOM Momentum –

CMO Chande Momentum Oscillator –

DPO Detrend Price Oscillator –

UO Ultimate Oscillator –

example of DTW applied to the closing price time series of two major
cryptocurrencies. Specifically, the bold green line represents the closing
price time series of ETH, while the bold yellow line represents the
closing price time series of DASH. Each black-dashed line connects a
point in one time series to its corresponding (most similar) point in the
other time series. Note that if the considered time series were identical,
all the black-dashed lines would have been straight vertical, and no
(time) warping would have been required to line up the time series. The
DTW distance is finally computed by adding up the distance between
each pair of points linked by vertical lines.

http://www.alternative.me/crypto/fear-and-greed-index
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Fig. 4. A graphical example of DTW applied to the time series of the closing price of ETH and DASH, between 21 January 2020 and 11 March 2020. Each black dashed line
connects a point in one time series to its corresponding (most similar) point in the other time series.
Formally, given two time series 𝛼 = ⟨𝛼1, 𝛼2,… , 𝛼𝑚⟩ and 𝛽 =
⟨𝛽1, 𝛽2,… , 𝛽𝑛⟩, the 𝐷𝑇𝑊 (𝛼, 𝛽) is computed as:

𝐷𝑇𝑊 (𝛼, 𝛽) =
𝑧
∑

𝑖=1
|𝛼𝑝𝑖 − 𝛽𝑞𝑖 | (2)

which is based on the so-called warping path ⟨(𝑝1, 𝑞1), (𝑝2, 𝑞2),… ,
(𝑝𝑧, 𝑞𝑧)⟩, that is identified such that the warping path distance ∑𝑧

𝑖=1
|𝛼𝑝𝑖 − 𝛽𝑞𝑖 | is minimized, subject to the following constraints:

• the starting point of the path corresponds to the first element of
each time series, i.e., (𝑝1, 𝑞1) = (1, 1);

• the ending point of the path corresponds to the last element of
each time series, i.e., (𝑝𝑧, 𝑞𝑧) = (𝑚, 𝑛);

• for any given point (𝑖, 𝑗) in the path, the previous point can
assume only one of the following values: (𝑖 − 1, 𝑗), (𝑖, 𝑗 − 1), and
(𝑖 − 1, 𝑗 − 1). This constraint guarantees that all the elements in 𝛼
are matched to at least one corresponding element in 𝛽, and vice
versa.

Algorithmically, the warping path can be found using dynamic
programming (Eddy, 2004) to evaluate the cumulative distance 𝐷(𝑖, 𝑗)
between two elements 𝛼𝑖 and 𝛽𝑗 of the two time series 𝛼 and 𝛽. 𝐷(𝑖, 𝑗) is
formally computed as the Euclidean distance between 𝛼𝑖 and 𝛽𝑗 plus the
minimum of the cumulative distances of the adjacent elements, namely:

𝐷(𝑖, 𝑗) = (𝛼𝑖 − 𝛽𝑗 )2 + 𝑚𝑖𝑛

⎧

⎪

⎨

⎪

⎩

𝐷(𝑖 − 1, 𝑗)
𝐷(𝑖, 𝑗 − 1)

𝐷(𝑖 − 1, 𝑗 − 1)

⎫

⎪

⎬

⎪

⎭

, (3)

having 𝐷(1, 1) = (𝛼1 − 𝛽1)2.
In CARROT, we first compute a square and symmetric matrix 𝑄

by computing the pair-wise DTW distance among the hourly closing
prices of the considered cryptocurrencies. When analyzing long-term
time series, it may be important to avoid focusing on outdated patterns
and trends that do not hold anymore. Therefore, we specifically focus
the computation of the DTW on the most recent 𝑤 months, in order
to capture similarities among different cryptocurrencies in terms of
current patterns and trends.

Finally, we adopt the 𝑘-medoids clustering algorithm using the
distance matrix 𝑄, in order to obtain 𝑘 groups of cryptocurrencies
exhibiting similar trends. K-medoids is a clustering algorithm that
works similarly to k-means. However, instead of using the mean of
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the points in a cluster as the cluster center, also known as centroid,
it uses the most centrally located point in the cluster, referred to as
the medoid. K-medoids is also more robust to outliers than k-means
because it uses actual data points as cluster centers. Moreover, it is
more computationally efficient, since it only requires the computation
of distances between data points and medoids (which are actual data
points), instead of iteratively re-computing distances between all data
points and centroids, which are updated at each iteration. This aspect
also allows k-medoids to be fed with a pre-computed distance matrix,
in the place of a distance function. In our case, we feed it with the
distance matrix 𝑄, pre-computed through DTW.

3.3. Anomaly prediction through multi-target LSTM models

The last phase performed by CARROT is in charge of training one
multi-target model for each of the identified clusters, which is responsi-
ble for predicting future anomalies. As explained in Section 2, different
models can be exploited to achieve this complex task. When dealing
with sequential data, Recurrent Neural Networks (RNNs) are commonly
adopted (Hüsken & Stagge, 2003). However, their major weakness is
that they cannot effectively learn long-range dependencies, which are
crucial in financial time series (Niu & Wang, 2013). In the plethora of
RNN variations, the Long Short-Term Memory (LSTM) emerged as a
model capable of considering long-range dependencies in time series,
thanks to its memory cell provided with gates (Greff et al., 2016).
Additionally, LSTMs help to overcome the vanishing gradient problem
in RNNs while learning long-term contexts (Hochreiter & Schmidhuber,
1997; Pascanu et al., 2013). For these reasons, in CARROT we rely on
LSTM, for which in the following we provide a brief overview of its
architecture.

The output of an LSTM at a specific time step mainly depends on
three factors: (i) the network’s current long-term memory, also known
as the cell state, (ii) the output from the previous time step, also known
as the earlier hidden state, and (iii) the input data at the current time
step. A set of gates regulates how data in a sequence enters, is stored,
and leaves the network. Usually, a standard LSTM has three gates (i.e., a
forget gate, an input gate, and an output gate) and is described by the
following equations:

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑
(

𝑊𝑓𝑥𝑡 + 𝑉𝑓ℎ𝑡−1 + 𝑏𝑓
)

(4)

𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑
(

𝑊 𝑥 + 𝑉 ℎ + 𝑏
)

(5)
𝑡 𝑖 𝑡 𝑖 𝑡−1 𝑖
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�̃�𝑡 = 𝑡𝑎𝑛ℎ
(

𝑊𝑐𝑥𝑡 + 𝑉𝑐ℎ𝑡−1 + 𝑏𝑐
)

(6)

𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡 × �̃�𝑡 (7)
𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

(

𝑊𝑜𝑥𝑡 + 𝑉𝑜ℎ𝑡−1 + 𝑏𝑜
)

(8)

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ
(

𝐶𝑡
)

(9)

here 𝑥𝑡 and ℎ𝑡 are the input and the hidden state at time step t, while
, 𝑉 , and 𝑏 are trainable network parameters representing the weight
atrices and the biases: weights determine the level of connectivity

etween two neurons and control the magnitude of input influence
n the output; biases provide a fixed input to the next layer and
re not affected by the previous layer. Despite having no incoming
onnections, biases have their own outgoing connections with specific
eights. Therefore, a bias unit ensures that the neuron will still be
ctivated even when all inputs are zero.

The information from the previous hidden state and the current
nput are combined in the forget gate (see Eq. (4)). The sigmoid
unction guarantees an output vector containing values in the range
0, 1]. Specifically, the forget gate is a filter trained to output a score
lose to 0 when the knowledge from the earlier steps is irrelevant. On
he other hand, the forget gate will output a score closer to 1 when the
revious knowledge still needs to be considered.

The input gate (see Eq. (5)) performs a similar operation with
espect to the forget gate: it combines the previous hidden state and
he current input, and applies the sigmoid function. However, in this
ase, the score in the range [0, 1] is useful to determine the importance
f the new information provided by the input. At this point, the network
as sufficient information to calculate the new cell state (see Eq. (7)),
hich is the sum of two pieces of information: the scaled old state value
nd the scaled input. The former is obtained by pointwisely multiplying
he forget gate score by the previous cell state. Similarly, the latter can
e obtained by pointwisely multiplying the input gate score by the new
ell memory (see Eq. (6)). This tanh layer combines the previous hidden
tate and new input data, resulting in a vector that contains information
rom the new input data, given the context from the early hidden state
nd ranges in the interval [−1, 1]. In the final step, the new hidden state
s computed using the last filter, i.e., the output gate (see Eq. (8)). Also
n this case, the inputs are the same as the forget gate and the input
ate (previous hidden state and new data). Then, in order to output the
ew hidden state (see Eq. (9)), the cell state goes through tanh layer (to

push the values in the interval [−1, 1]) and is multiplied by the output
gate.

In CARROT we do not consider the standard version of LSTMs,
but we extend them to work in a multi-target setting. In particular,
the proposed architecture learns a model from multiple time series
and is able to simultaneously produce predictions of anomalies for all
of them. We learn 𝑘 deep multi-target models, i.e., one for each of
the clusters discovered in the previous phase. The goal is to capture
possible dependencies in the target space (as suggested by Caruana,
1997) among the time series of the cryptocurrencies grouped in the
same cluster.

Typically, multi-target neural networks exploit multiple heads,
where a head refers to the final layer (or set of layers) which is
responsible for making predictions for a specific target (i.e., one head
for each target), based on the features learned by the base model.
Therefore, training multiple heads in parallel, while using a shared
base model, leads to the optimization of the predictions of each head
also on the basis of the others, thus capturing possible dependencies
among the time series. Fig. 5 shows an example of a multi-target LSTM
architecture trained by CARROT from a cluster of 3 time series. In our
architecture, after the LSTM layers, each accepting sequences of length
𝑙 (see Fig. 3 for an example with 𝑙 = 3), we employ: (i) a dropout layer
(between the last LSTM layer and the first dense layer represented with
green circles in Fig. 5) to alleviate overfitting issues and help the model
to generalize; (ii) three dense layers exploiting the ReLU activation
function (green circles in Fig. 5); (iii) a final dense layer exploiting the
 d
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softmax activation function to finally predict the label (violet circles in
Fig. 5).

The weights of each head are updated in order to minimize the
categorical cross-entropy loss function, which is formally defined as:

𝐿𝑜𝑠𝑠(𝑦, �̂�) = −
|𝐷|

∑

𝑖=1

3
∑

𝑘=1
𝑦(𝑖,𝑘) ⋅ log �̂�𝑖,𝑘 (10)

where 𝑦 ∈ R|𝐷|×3 refers to one-hot-encoded actual labels of the |𝐷|

training instances, and �̂� ∈ R|𝐷|×3 refers to predicted probability
distribution for the |𝐷| training instances, returned by the final softmax
ayer of a given head (represented as violet circles in Fig. 5). Note
hat one-hot-encoded labels and predicted probability distributions are
epresented as 3-dimensional vectors, since we have 3 different labels
an_up, an_down, and normal).

In order to simultaneously consider all the heads of the multi-target
etwork associated with a cluster, we apply a mean strategy to compute
he global loss of the cluster, as follows:

𝑙𝑜𝑏𝑎𝑙 𝐿𝑜𝑠𝑠(𝐾) =
∑

𝑗∈𝐾 𝐿𝑜𝑠𝑠(𝑦(𝑗), �̂�(𝑗))
|𝐾|

(11)

where 𝐾 represents the specific cluster under consideration, containing
the time series of multiple cryptocurrencies, while 𝑦(𝑗) and �̂�(𝑗) denote
he one-hot-encoded actual labels and the predicted probability dis-
ribution, respectively, for the cryptocurrency (i.e., head/target) 𝑗 ∈
.

. Experiments

In the following subsections, we first provide some details about the
ataset considered in our evaluation, the experimental setting and the
onsidered competitor approaches. Finally, we show and discuss the
btained results.

.1. Dataset and experimental setting

As introduced in Section 3.1, for the evaluation of the performance
xhibited by CARROT, we retrieved a real dataset exploiting Yahoo!
inance APIs. The obtained dataset contains hourly observations of
7 popular cryptocurrencies from 21 January 2020 to 31 December
021. The considered cryptocurrencies are Bitcoin (BTC), BitShares
BTS), Dash (DASH), Digibyte (DGB), Dogecoin (DOGE), Ethereum
ETH), IOCoin (IOC), Litecoin (LTC), MaidSafeCoin (MAID), Monacoin
MONA), Navcoin (NAV), Syscoin (SYS), Vertcoin (VTC), Counter-
arty (XCP), Stellar (XLM), Monero (MNR), and Ripple (XRP). These
ryptocurrencies have been selected due to their popularity, market
apitalization, and trading volume. Indeed, cryptocurrencies with lower
rading volume and fewer transactions often exhibit price movements
ainly due to the lack of liquidity, rather than to real trends in trading

perations.
The labeling of the dataset was performed following the strategy

xplained in Section 3.1. As regards the threshold 𝑠, in other studies
elated to stock market prediction (Feng et al., 2019), a value of 𝑠 = 0.5
as adopted. In our work, since cryptocurrencies generally tend to be
uch more volatile than traditional stocks, we labeled the dataset using
= 1.0 (see the obtained label distribution for each cryptocurrency in
able 2).

In our study, we adopted the time series cross-validation setting,
hich preserves the temporal order of observations. In particular, each
onth of the dataset, starting from the 7th, is alternatively considered

s testing set, while a given historical window (i.e., observations col-
ected during a given number of months preceding the testing month)
s considered as training set. Considering that the testing period ranges
rom July 2020 to December 2021, we actually performed a 18-fold
ime series cross-validation. As regards the training set, we considered

ifferent window sizes: 1 month (henceforth denoted with 𝑫𝟏𝒎), 3
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Fig. 5. An example of the multi-target LSTM architecture trained by CARROT for one cluster containing the time-series of three cryptocurrencies.
Table 2
Label distribution for each cryptocurrency in the considered dataset.

Cryptocurrency Normal an_up an_down

BTC 10 579 3586 3379
BTS 4495 6574 6475
DASH 6191 5886 5467
DGB 3744 7033 6767
DOGE 6624 5289 5631
ETH 7695 5053 4796
IOC 3641 6921 6982
LTC 6486 5579 5479
MAID 5297 6200 6047
MONA 7255 5039 5250
NAV 3205 6616 7723
SYS 1921 7898 7725
VTC 769 8390 8385
XCP 6396 6263 4885
XLM 5684 6081 5779
MNR 5843 6028 5673
XRP 7273 5155 5116

months (henceforth denoted with 𝑫𝟑𝒎), 6 months (henceforth denoted
with 𝑫𝟔𝒎), and the landmark setting (henceforth denoted with 𝑫𝒂𝒍𝒍),
that considers as training set all the available observations preceding
the testing month. In Section 4.2, we will show and discuss the average
results achieved over the 18 folds of the time series cross-validation.

We also evaluated the results considering different values for the
time window 𝑤 used to compute the DTW distance matrix 𝑄 ∈ R17×17

for the clustering phase. Specifically, we collected the results with 𝑤 ∈
{1, 3, 6} (expressed in months). For k-medoids, we run the experiments
with different values of its parameter 𝑘, namely, 𝑘 ∈ {3, 5, 7}.

As a competitor approach, we considered multiple single-target
LSTMs, each learned on one cryptocurrency (17 independent single-
target LSTM models). The comparison with this approach allows us
to properly assess the capability of CARROT to capture and exploit
dependencies between different cryptocurrencies. Moreover, we run
the experiments with two additional single-target neural network ar-
chitectures, trained on each cryptocurrency: a multi-layer perceptron
(MLP) and a convolutional neural network (CNN). The MLP consists
of two hidden layers with 32 and 16 neurons, respectively, followed
by an output layer with 3 neurons that adopt the softmax activation
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function. The CNN network uses two one-dimensional convolutional
layers, followed by a max pooling layer, and a final dense architecture
similar to that of the MLP.

For all the considered approaches, the size of historical data con-
sidered to represent each training instance was set to 30 h, which also
corresponds to the size 𝑙 of the sequences accepted in input by the LSTM
layers.

As evaluation measure, we collected the macro average F1-score,
which provides a general overview of the trade-off between precision
and recall, and takes into account the possible unbalancing between the
labels.

4.2. Results and discussion

We first analyze the percentage of F1-score improvement achieved
by CARROT in comparison with single-target LSTMs, i.e.,
F1𝐶𝐴𝑅𝑅𝑂𝑇 −F1𝐿𝑆𝑇𝑀

F1𝐿𝑆𝑇𝑀
⋅100, where F1𝐶𝐴𝑅𝑅𝑂𝑇 is the average F1-score obtained

by CARROT over all the crypturrencies, and F1𝐿𝑆𝑇𝑀 is the average F1-
score obtained by the multiple single-target LSTM models, each learned
on a single cryptocurrency. In particular, in Table 3 we show the im-
provements for all 36 considered configurations (4 training intervals ×
3 values for the parameter 𝑤 × 3 values for the parameter 𝑘), averaged
over the 18 folds of the time series cross-validation. From the table, we
can immediately observe that CARROT was always able to obtain better
results with respect to multiple single-target LSTMs (improvement > 0),
with an average improvement of the macro F1-score of 10%. This result
confirms that the approach adopted by CARROT, based on clustering
cryptocurrencies time series and on training multi-target models, is
actually more effective than training one single-target model for each
of the considered cryptocurrencies. This confirms our initial intuition
that leveraging possible dependencies, or common influencing factors,
among different cryptocurrencies is clearly beneficial.

Looking at the improvements obtained in each configuration, it
emerges that the historical interval adopted for the computation of the
DTW, governed by the parameter 𝑤, does not significantly influence the
results. This means that considering one month preceding the testing
month (𝑤 = 1) can be considered enough to properly capture the
similarities among cryptocurrency trends. Also the value of 𝑘, which
determines the number of clusters, does not appear to significantly
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Fig. 6. Graphical representation of the clustering obtained by CARROT. Each color represents one of the 𝑘 identified clusters. The graphical representation only refers to the first
fold of the cross validation.
Table 3
Average percentage of improvement over the 18-fold of the cross validation, in terms
of F1-score, obtained by CARROT with respect to multiple single-target LSTM models.

Training interval DTW window (w) # clusters (𝑘)

(months) 3 5 7

1 6% 6% 6%
3 7% 7% 6%𝑫𝟏𝒎
6 6% 7% 7%

1 9% 8% 10%
3 9% 10% 11%𝑫𝟑𝒎
6 8% 9% 10%

1 18% 19% 20%
3 20% 19% 20%𝑫𝟔𝒎
6 18% 20% 18%

1 3% 5% 8%
3 2% 6% 8%𝑫𝒂𝒍𝒍
6 3% 6% 7%

influence the results. This may be possibly motivated by the fact that,
independently on the considered values of 𝑘, homogeneous groups of
cryptocurrencies were identified and exploited by the learned multi-
target models (see the clusters identified by CARROT for the first fold
in Fig. 6).

Finally, analyzing the training interval, it emerges that the most
significant improvement (in average, 19%) is obtained when the last
6 months of the dataset are considered during the training, i.e., in
the setting 𝐷6𝑚. The reason for a lower improvement obtained when
using all the available data (i.e., in the setting 𝐷𝑎𝑙𝑙) could lie in the
fact that single-target LSTM models obtained good results because of
more historical data available. This obviously leaves less margin for
further improvement. In any case, also in the setting 𝐷𝑎𝑙𝑙, capturing
and exploiting dependencies among cryptocurrency trends, as done by
CARROT, led to an average improvement of the F1-score of 5%.

In Fig. 7, we draw some specific charts that allow us to better
observe the influence of each of these parameters. Specifically, each
chart represents the frequency (on the y-axis) of each value of the F1-
score (on the x-axis), obtained by setting the value of a parameter and
by varying the others. Looking at these charts, we can confirm that
CARROT in terms of absolute F1-Score is rather stable with respect
to different values of 𝑤 and 𝑘. The first chart in Fig. 7 also confirms
the superiority of the results when considering 6 months as training
interval.

In Fig. 8, we report histograms that, for all the considered training
intervals, depict the actual F1-scores obtained for each cryptocurrency
by CARROT with 𝑤 = 3 and 𝑘 = 7, that can be considered one of the
best configurations. Additionally, we show the performance obtained
by the considered single-target competitors, namely MLP, CNN, and
LSTM. In the same figure, we also represent, through horizontal lines,
9 
Fig. 7. Influence of the training interval (in the top), of the parameter 𝑤 (in the
middle), and of number of clusters 𝑘 identified during the clustering phase by CARROT
(in the bottom).

the average F1-score achieved by each method over all the considered
cryptocurrencies, to evaluate its overall (cryptocurrency-independent)
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Fig. 8. Histograms, representing the F1-score for each cryptocurrency, and horizontal lines, representing the average F1-score over all the cryptocurrencies, obtained by CARROT
(𝑤 = 3 and 𝑘 = 7) and by competitors.
performance. We can observe that the average F1-score increases as
the training interval increases, even if the results show that exploiting
more than 6 months during the training does not provide significant
advantages. The training interval 𝐷6𝑚 also appears to be the best
when looking at individual cryptocurrencies. In this scenario, CARROT
outperformed the set of 17 single-target LSTMs for all the 17 analyzed
cryptocurrencies, with an average F1-score improvement of 20%.

In comparison with the CNN and the MLP, the superiority of CAR-
ROT is very clear. The CNN is able to compete with CARROT only
in the 𝐷1𝑚 training interval. This can be attributed to the limited
amount of data available in the training phase, which may be in-
sufficient for the multi-target models learned by CARROT to achieve
a significant advantage by capturing useful patterns in the data and
exploiting the inter-cryptocurrency relationships derived from the clus-
tering phase. However, as shown by the average F1-scores represented
by the horizontal lines in Fig. 8, when the training interval increases,
the advantages of CARROT over single-target models becomes evident.

Finally, we analyzed the average rank achieved by CARROT and all
the competitors along the different training intervals. Fig. 9 graphically
depicts the results, from which we can observe that CARROT, with the
10 
training interval 𝐷6𝑚, obtains an average rank of 1.235, while its best
competitor (i.e., single-target LSTMs with training interval 𝐷𝑎𝑙𝑙) obtains
an average rank of 4.412. We additionally performed a Wilcoxon
signed-rank test with the False Discovery Rate (FDR) correction for
multiple tests proposed by Benjamini and Hochberg (1995) between
the best configuration of CARROT and the best configuration of each
of its competitors. The obtained results, that are reported in Table 4,
emphasize that the difference is always statistically significant with a
𝑝-value < 0.01.

5. Conclusion

The prediction of anomalies in the trends of the cryptocurrency
price is a complex task, mainly due to the high volatility of the
market. However, by exploiting possible correlations among different
cryptocurrencies, it is possible to improve the predictive accuracy of the
models. This aspect can be valuable for investors and traders seeking
to make more informed decisions.

In this paper, we proposed a novel method for predicting anoma-
lies in cryptocurrency trends, called CARROT. The proposed method
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Fig. 9. Average rank obtained by all the methods along all the considered training intervals.
Table 4
Adjusted 𝑝-values of the signed Wilcoxon rank tests between the best configuration of
CARROT and the best configuration of each of its competitors. We indicate in bold the
statistically significant values (𝑝-value < 0.01).

Adjusted p-value Winner

CARROT 𝐷6𝑚 𝑣𝑠. LSTM 𝐷𝑎𝑙𝑙 0.00027 CARROT 𝐷6𝑚
CARROT 𝐷6𝑚 𝑣𝑠. MLP 𝐷3𝑚 0.00015 CARROT 𝐷6𝑚
CARROT 𝐷6𝑚 𝑣𝑠. CNN 𝐷3𝑚 0.00015 CARROT 𝐷6𝑚

exploits clustering of time series, based on DTW, to group the tem-
poral data of related cryptocurrencies, to highlight temporal corre-
lations among them, and to identify those potentially affected by
common underlying factors. Then, for each group of cryptocurrencies,
a multi-target LSTM model is trained to capture possible dependencies
and simultaneously predict the occurrence of an anomaly for all the
cryptocurrencies fallen in the group.

The performed experiments emphasized that capturing the depen-
dencies among groups of correlated cryptocurrencies leads to signif-
icant improvements in terms of F1-score, with respect to multiple,
independent single-target models.

Despite the promising results obtained, CARROT exhibits some limi-
tations which will be the subject of future research. First, it operates in
a batch learning fashion, by processing data at fixed intervals rather
than continuously. This approach limits the model ability to adapt
in real-time to rapidly-changing market conditions, which may be
considered particularly crucial in the cryptocurrency domain. Future
work could include the exploration of online learning techniques to
address this limitation.

Second, our method demonstrates limited capability in detecting
and adapting to concept drifts. This weakness may be the motivation
behind the sub-optimal results obtained in the 𝐷𝑎𝑙𝑙 setting. Indeed, the
lower improvement over competitors obtained in this setting suggests
that our approach may struggle to effectively leverage long-term his-
torical data, possibly due to its inability to identify shifting patterns in
the time series and adapt to them.

Last, the adoption of LSTM networks as base learners, while ef-
fective for capturing complex temporal dependencies, introduces some
limitations in terms of explainability. The black box nature of LSTM
models makes it difficult to interpret the motivations behind specific
predictions. While obtaining an explanation in a trading context may
not appear as critical as in other domains (e.g., medical), it may
still improve the trustworthiness of the learned models. To address
this limitation, future work could explore the integration of attention
mechanisms or the adoption of base learners that are inherently more
interpretable (e.g., tree-based methods).
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